摘要:
The invention concerns a process for affinity viscosimetry and a viscosimetric affinity sensor on the basis of sensitive liquids with analyte-dependent viscosity which are localized within a perfusable dialysis chamber and contain colloidal constituents which are cross-linked by affinity bonds. The viscosimetric affinity sensor according to this invention is characterized by the spatial or temporal separation of analyte diffusion from the measurement of the flow resistance for such sensitive liquid flowing through a capillary, needle-like body or other liquid conductor, which integrated combination of a dialysis chamber with viscosimeter enables a researcher to make measurements under lab conditions that provide spatial separation of the dialysis process from the rheological analysis, as done under test conditions where the maximum shear rate of sensitive liquid in the viscosity sensor is at least twice that shear rate of sensitive liquid experienced in the dialysis chamber. An important advantage of the invention consists in small volume-displacement and negligible structural change within the matrix or organ of living tissue to be investigated.
摘要:
The invention concerns a process for affinity viscosimetry and a viscosimetric affinity sensor on the basis of sensitive liquids with analyte-dependent viscosity which are localized within a perfusable dialysis chamber and contain colloidal constituents which are cross-linked by affinity bonds. The viscosimetric affinity sensor according to this invention is characterized by the spatial or temporal separation of analyte diffusion from the measurement of the flow resistance for such sensitive liquid flowing through a capillary, needle-like body or other liquid conductor, which integrated combination of a dialysis chamber with viscosimeter enables a researcher to make measurements under lab conditions that provide spatial separation of the dialysis process from the rheological analysis, as done under test conditions where the maximum shear rate of sensitive liquid in the viscosity sensor is at least twice that shear rate of sensitive liquid experienced in the dialysis chamber. An important advantage of the invention consists in small volume-displacement and negligible structural change within the matrix or organ of living tissue to be investigated.
摘要:
A micro-dialysis probe extending longitudinally between a proximal probe opening and a distal probe tip and having a supply line and a drainage line for a drip-feed solution. A tube may be provided for supporting the drainage line. A dialysis section, wherein the flow channel for the drip-feed solution experiences an inversion, is formed generally between the supply line and the drainage line, in the vicinity of the distal probe tip. The supply line and the drainage line are respectively arranged substantially side by side and together form the probe shaft of the micro-dialysis probe.
摘要:
A micro-dialysis probe extending longitudinally between a proximal probe opening and a distal probe tip and having a supply line and a drainage line for a drip-feed solution. A tube may be provided for supporting the drainage line. A dialysis section, wherein the flow channel for the drip-feed solution experiences an inversion, is formed generally between the supply line and the drainage line, in the vicinity of the distal probe tip. The supply line and the drainage line are respectively arranged substantially side by side and together form the probe shaft of the micro-dialysis probe.
摘要:
A micro-dialysis probe extending longitudinally between a proximal probe opening and a distal probe tip and having a supply line and a drainage line for a drip-feed solution. A tube may be provided for supporting the drainage line. A dialysis section, wherein the flow channel for the drip-feed solution experiences an inversion, is formed generally between the supply line and the drainage line, in the vicinity of the distal probe tip. The supply line and the drainage line are respectively arranged substantially side by side and together form the probe shaft of the micro-dialysis probe.
摘要:
An apparatus for measuring the viscosity of a fluid having a first rigid member extending from a body of semiconductor material and provided with a first conductive path and a second resiliently flexible member provided with a second conductive path and arranged in cantilever fashion over the rigid member. At least one of the conductive paths may be selectively energized to brig about relative movement between the rigid and flexible member. Subsequent deenergization of the path causes the resiliently flexible member to return to its initial position, the rate of return being measured to derive a signal representative of the viscosity. Also described are methods of carrying out the measurement and of fabricating the apparatus.
摘要:
The invention relates to measuring the concentration of analytes with the aid of an oxidase in an immersion sensor situated in a fluid or in a matrix containing fluid. Oxygen diffuses into the enzyme layer from within, from a gas-filled space connected to the atmosphere and/or to an oxygen reservoir. This enables oxygen saturation of the oxidase in a low-oxygen or oxygen-free medium and/or at high analyte concentrations. The analyte diffuses into the enzyme layer in a channel or a number of channels which contain(s) water and limit(s) diffusion, wherein the channel/channels on the surface of the sensor is/are filled with a protein-impermeable, hydrophilic matrix. By increasing the channel cross-section on the surface of the sensor and/or by connecting the channel/channels to a protein-impermeable, porous, hydrophilic layer on the surface of the sensor, the effect of outer deposits on the diffusion resistance of the analyte is reduced.
摘要:
The invention relates to measuring the concentration of analytes with the aid of an oxidase in an immersion sensor situated in a fluid or in a matrix containing fluid. Oxygen diffuses into the enzyme layer from within, from a gas-filled space connected to the atmosphere and/or to an oxygen reservoir. This enables oxygen saturation of the oxidase in a low-oxygen or oxygen-free medium and/or at high analyte concentrations. The analyte diffuses into the enzyme layer in a channel or a number of channels which contain(s) water and limit(s) diffusion, wherein the channel/channels on the surface of the sensor is/are filled with a protein-impermeable, hydrophilic matrix. By increasing the channel cross-section on the surface of the sensor and/or by connecting the channel/channels to a protein-impermeable, porous, hydrophilic layer on the surface of the sensor, the effect of outer deposits on the diffusion resistance of the analyte is reduced.
摘要:
The invention relates to measuring the concentration of analytes with the aid of an oxidase in an immersion sensor situated in a fluid or in a matrix containing fluid. Oxygen diffuses into the enzyme layer from within, from a gas-filled space connected to the atmosphere and/or to an oxygen reservoir. This enables oxygen saturation of the oxidase in a low-oxygen or oxygen-free medium and/or at high analyte concentrations. The analyte diffuses into the enzyme layer in a channel or a number of channels which contain(s) water and limit(s) diffusion, wherein the channel/channels on the surface of the sensor is/are filled with a protein-impermeable, hydrophilic matrix. By increasing the channel cross-section on the surface of the sensor and/or by connecting the channel/channels to a protein-impermeable, porous, hydrophilic layer on the surface of the sensor, the effect of outer deposits on the diffusion resistance of the analyte is reduced.
摘要:
A method and apparatus for determining solute levels by affinity viscosimetry involving a sensitive fluid, in which the sensitive fluid flows continuously through a first hydraulic resistor in the flow direction of the dialysis chamber, and the sensitive fluid modified by dialysis simultaneously flows through another resistor, wherein the pressure differences between the resistors is determined on-line with the aid of pressure sensors and converted into a relative value which is approximately proportional to the concentration of solute.