摘要:
The present disclosure presents glucose sensing methods and systems. One such system comprises an electrospun-nanofibrous-membrane (ENFM)-based amperometric glucose sensor integrated on a silicon chip, in which the glucose sensor has a working electrode, a reference electrode, and a counter electrode, wherein the working electrode comprises an ENFM-based sensing electrode. The system further comprises a potentiostat circuit integrated on the silicon chip such that the potentiostat circuit comprises a voltage control unit to control a voltage difference between the working electrode and the reference electrode and a transimpedance amplifier to measure a current flow between the working electrode and the counter electrode, in which a strength of the current flow corresponds to an amount of glucose present in a sample of blood on the glucose sensor.
摘要:
Embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have a membrane structure with an analyte permeability that is substantially temperature independent. The devices also include a sensing layer disposed on a working electrode of in vivo analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.
摘要:
This disclosure relates to creatinine biosensors and the uses thereof. More specifically, this disclosure describes potentiometric creatinine sensors which utilizes one or both of a type of enzyme capable of directly producing ammonium ions (NH4+) as a consequence of coming into contact with a liquid sample and an internal fill solution with a low free ammonium ion concentration.
摘要:
In one embodiment, a continuous analyte sensor having more than one working electrode, and configured to reduce or eliminate crosstalk between the working electrodes. In another embodiment, a continuous analyte sensor having more than one working electrode, and configured so that a membrane system has equal thicknesses over each of the electrodes, despite having differing numbers of layers over each of the electrodes. In another embodiment, a configuration for connecting a continuous analyte sensor to sensor electronics. In another embodiment, methods for forming precise windows in an insulator material on a multi-electrode assembly. In another embodiment, a contact assembly for a continuous analyte sensor having more than one working electrode.
摘要:
Embodiments of the invention provide an in-situ polymerization technique for creating a glucose sensor chemistry stack. An analyte sensor comprises a crosslinked polymer matrix in contact with an electrode. The crosslinked polymer matrix is formed by exposing ultraviolet (UV) light to a polymer matrix mixture comprising a plurality of hydroxyethyl methacrylate (HEMA) monomers, one or more di-acrylate crosslinkers, one or more UV photoinitiators, and an oxidoreductase. The oxidoreductase is covalently linked to the crosslinked polymer matrix. In typical embodiments, the oxidoreductase is a glucose oxidase-acrylate bioconjugate. In one or more embodiments, the analyte sensor apparatus further comprises a glucose limiting membrane positioned over the crosslinked polymer matrix. The glucose limiting membrane is formed by exposing ultraviolet (UV) light to a glucose limiting membrane mixture comprising a plurality of hydroxyethyl methacrylate (HEMA) monomers, one or more di-acrylate crosslinkers, one or more UV photoinitiators, ethylene glycol, and water.
摘要:
Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
摘要:
Disclosed are devices for determining an analyte concentration (e.g., glucose). The devices comprise a sensor configured to generate a signal associated with a concentration of an analyte and a sensing membrane located over the sensor. The sensing membrane comprises an enzyme layer, wherein the enzyme layer comprises an enzyme and a polymer comprising polyurethane and/or polyurea segments and one or more zwitterionic repeating units. The enzyme layer protects the enzyme and prevents it from leaching from the sensing membrane into a host or deactivating.
摘要:
An analyte sensor for measuring physiological parameters, a method for making the analyte sensor, and method of measuring a level of an analyte in a subject are disclosed. In one aspect, the analyte sensor includes a crosslinked, hydrophilic copolymer in contact with a surface of an electrode, and an analyte sensing component embedded within the crosslinked, hydrophilic copolymer. The crosslinked, hydrophilic copolymer has methacrylate-derived backbone chains of first methacrylate-derived units, second methacrylate-derived units and third methacrylate-derived units. The first and second methacrylate-derived units have side chains that can be the same or different, and the third methacrylate-derived units in different backbone chains are connected by hydrophilic crosslinks. The crosslinked, hydrophilic copolymer has an analyte permeability that is substantially temperature independent. The analyte sensor generates signals that are substantially temperature independent over a range of temperatures.
摘要:
A TFT biosensor includes a gate electrode (silicon substrate), a reference electrode, and enzyme that is fixed to an insulating substrate spatially separated from the gate electrode and the reference electrode. A pH variation in the vicinity of an ion-sensitive insulating film is induced by a reaction between the enzyme and a sensing object material. The TFT biosensor can detect a concentration of the sensing object material with high sensitivity by detecting the pH variation as a threshold voltage shift of characteristics of a gate-source voltage to a source-drain current.
摘要:
Novel membranes comprising various polymers containing heterocyclic nitrogen groups are described. These membranes are usefully employed in electrochemical sensors, such as amperometric biosensors. More particularly, these membranes effectively regulate a flux of analyte to a measurement electrode in an electrochemical sensor, thereby improving the functioning of the electrochemical sensor over a significant range of analyte concentrations. Electrochemical sensors equipped with such membranes are also described.