Abstract:
The treatment of petroleum and petroleum fractions by ultrasound to reduce or eliminate the sulfur levels and to upgrade the material by lowering the boiling points of its various components is improved by the exposure of the treated emulsion to microwave energy to separate the phases.
Abstract:
Liquids are treated by ultrasound in a flow-through reaction vessel with an elongate ultrasonic horn mounted to the vessel with one end of the horn extending into the vessel interior. The liquid flow path inside the vessel is such that the entering liquid strikes the end of the horn at a direction normal to the end, then flows across the surface of the end before leaving the vessel. The end surface of the horn is positioned in close proximity to the entry port to provide a relatively high surface-to-volume ratio in the immediate vicinity of the horn end. In a further improvement, the horn is joined to an ultrasonic transducer through a booster block that provides an acoustic gain to the ultrasonic vibrations, and the booster block is plated with a reflective metal to lessen any loss of ultrasonic energy being transmitted to the horn.
Abstract:
Ultrasound for use in chemical reactions is generated by an electromagnet formed from an ultrasound transducer whose central feature is a loop of magnetostrictive material wound with coils oriented to produce an oscillating magnetostrictive force when an oscillating voltage is applied. The oscillations in the transducer loop are transmitted to an ultrasonic horn that is immersed in a reaction medium where the ultrasonic vibrations are transmitted directly to the reaction mixture.
Abstract:
The present invention is directed to a high-powered (e.g., >500 W) ultrasonic generator for use especially for delivering high-power ultrasonic energy to a varying load including compressible fluids. The generator includes a variable frequency triangular waveform generator coupled with pulse width modulators. The output from the pulse width modulator is coupled with the gates of an Isolated Gate Bipolar Transistor (IGBT), which amplifies the signal and delivers it to a coil that is used to drive a magnetostrictive transducer. In one embodiment, high voltage of 0-600 VDC is delivered across the collector and emitter of the IGBT after the signal is delivered. The output of the IGBT is a square waveform with a voltage of ±600V. This voltage is sent to a coil wound around the ultrasonic transducer. The voltage creates a magnetic field on the transducer and the magnetorestrictive properties of the transducer cause the transducer to vibrate as a result of the magnetic field. The use of the IGBT as the amplifying device obviates the need for a Silicon Controlled Rectifier (SCR) circuit, which is typically used in low powered ultrasonic transducers, and which would get overheated and fail in such a high-powered and load-varying application.
Abstract:
Petroleum residua are combined with water or an aqueous solution to form an emulsion which is then treated with ultrasound at a sufficient intensity and for a sufficient period of time to cause a conversion of the heavy hydrocarbon components of the residua to lighter components, thereby shifting the entire boiling point curve to lower boiling points. This allows one to draw a greater proportion of usable oil from the residua.
Abstract:
Liquids are treated by ultrasound in a flow-through reaction vessel with an elongate ultrasonic horn mounted to the vessel with one end of the horn extending into the vessel interior. The liquid flow path inside the vessel is such that the entering liquid strikes the end of the horn at a direction normal to the end, then flows across the surface of the end before leaving the vessel. The end surface of the horn is positioned in close proximity to the entry port to provide a relatively high surface-to-volume ratio in the immediate vicinity of the horn end. In a further improvement, the horn is joined to an ultrasonic transducer through a booster block that provides an acoustic gain to the ultrasonic vibrations, and the booster block is plated with a reflective metal to lessen any loss of ultrasonic energy being transmitted to the horn.
Abstract:
An ultrasonic horn for use in a chemical reactor is formed as a unitary piece of material whose length is approximately equal to the wavelength of ultrasonic waves through the material at a selected ultrasonic frequency. The horn has a conically shaped distal end and a mounting surface at its proximal end, plus a mounting fixture between the proximal and distal ends for mounting the horn to a flow-through reactor with the distal end protruding into the reactor interior while the proximal end extends outside the reactor. The horn further contains a seal between the proximal and distal ends to seal the horn to the interior of a reaction vessel in a fluid-tight manner. With the unitary construction and the conical distal end, the horn is capable of transmitting high power ultrasonic waves to the reactor interior without damage to the horn or its mounting fixtures.
Abstract:
Ultrasound for use in chemical reactions is generated by an electromagnet formed from an ultrasound transducer whose central feature is a loop of magnetostrictive material wound with coils oriented to produce an oscillating magnetostrictive force when an oscillating voltage is applied. The oscillations in the transducer loop are transmitted to an ultrasonic horn that is immersed in a reaction medium where the ultrasonic vibrations are transmitted directly to the reaction mixture.
Abstract:
A method for manufacturing an emulsifier package is disclosed. The method comprises blending a flow of fuel soluble product, a flow of stabilizer, and a flow of water in a mixing vessel to form a mixture. Mixing the mixture in the mixing vessel and recirculating the mixture through the mixing vessel. Lastly, shearing the mixture with a shearing device at a rate of about 27,500 shears per second to about 87,500 shears per second. A method for manufacturing an aqueous fuel emulsion is also disclosed.