摘要:
An organometallic complex of a group 4 metal having a cyclopentadienyl ligand and a heterosubstituted phosphinimine ligand is a catalyst component for olefin polymerization. The heterosubstituted phosphinimine ligand may be conveniently and inexpensively synthesized using readily available precursors which are comparatively non-pyrophoric. The resulting catalysts are highly active for ethylene copolymerization, particularly when activated with an alumoxane or ionic activator.
摘要:
A catalyst system comprises an organometallic complex of a group 4 metal having a ketimide ligand. The organometallic complex preferably also contains a cyclic ligand which forms a delocalized pi-bond with the metal (such as a cyclopentadienyltype ligand). Preferred organometallic complexes may be activated with a so-called “substantially non coordinating anion” to form a low cost cocatalyst system which is excellent for the preparation of olefin copolymers having both high molecular weight and very low density.
摘要:
Organometallic complexes of titanium or zirconium having only three ligands (namely a cyclopentadienyl ligand, a phosphinimine ligand and an activatable ligand) are catalyst components for olefin polymerization. Preferred polymerization systems are prepared by combining the organometallic complexes with an ionic activator and/or an alumoxane. Preferred catalyst components contain titanium (III) and are used in ethylene polymerization.
摘要:
New group 4 organometallic complexes are characterized by having a phosphinimine ligand and two or more cyclopentadienyl ligands. Certain of these complexes exhibit unusual behavior when examined by nuclear magnetic resonance (NMR) techniques. Well defined crystals of the inventive complexes have been isolated and analyzed by x-ray crystallography. The complexes have also been found to be polymerization catalysts which are surprisingly more active than their simple metallocene analogs.
摘要:
A catalyst system comprises an organometallic complex of a group 4 metal having a ketimide ligand. The organometallic complex preferably also contains a cyclic ligand which forms a delocalized pi-bond with the metal (such as a cyclopentadienyl-type ligand). Preferred organometallic complexes may be activated with a so-called "substantially non coordinating anion" to form a low cost cocatalyst system which is excellent for the preparation of olefin copolymers having both high molecular weight and very low density.
摘要:
Organometallic complexes having two phosphinimine ligands and at least one activatable ligand are catalyst components for olefin polymerization. Preferred polymerization systems are prepared by combining the organometallic complexes with an ionic activator and/or an alumoxane. Preferred catalyst components contain titanium, zirconium, or hafnium and are activated with an ionic activator to form catalysts for ethylene polymerization.
摘要:
Organometallic complexes having two phosphinimine ligands and at least one activatable ligand are catalyst components for olefin polymerization. Preferred polymerization systems are prepared by combining the organometallic complexes with an ionic activator and/or an alumoxane. Preferred catalyst components contain titanium, zirconium, or hafnium and are activated with an ionic activator to form catalysts for ethylene polymerization.
摘要:
A new family of metallacycles, which are preferably zirconacycles, is characterized by having a unique halogenated substituent. The metallacycles are useful for the preparation of main group heterocycles, especially two novel families of heterocycles. The first new family of heterocycles preferably contains a halosilyl substituent. A preferred group of the second family of novel heterocycles contains a silyl group having a leaving group bonded thereto. The preferred group of these heterocycles is suitable for preparing novel organometallic complexes having a bridged bidentate heterocyclic ligand. These novel organometallic complexes may be used as catalyst components in olefin polymerization. The subject catalyst components are particularly well suited for use in the medium pressure solution process to prepare linear low density polyethylene.
摘要:
An olefin polymerization process uses a catalyst with an organometallic complex of a group 4 metal having a bridged cyclopentadienyl-phosphole ligand, as defined by the formula: ##STR1## wherein: each Sl is a non-interfering spectator ligand;Y is selected from Si, Ge and Sn;Z is 2;R.sub.1, R.sub.2, and R.sub.3 are hydrogen or non-interfering substituents;Cp* is selected from cyclopentadienyl, substituted cyclopentadienyl, indenyl, substituted indenyl, fluorenyl and substituted fluorenyl;M4 is selected from Ti, Zr and Hf;X is an anionic ligand; andn is 1 or 2, depending upon the oxidation state of M4.A catalyst having a fluorenyl ligand and a dimethyl silyl bridge is preferred. This invention may be used to prepare polyethylenes having a broad molecular weight distribution.
摘要:
A medium pressure process for the solution polymerization of ethylene at a temperature of from 80° C. to 250° C. in the presence of a catalyst system comprising (1) a catalyst component which is a group 4 metal complex having a delocalized, cyclic, pi-bonded ligand, a (defined, specific) heteroligand and one or two activatable ligands; and (2) an ionic activator which does not contain an active proton. The catalyst component is unbridged and easily synthesized. It is highly active in solution polymerization when properly activated (but is not active when used in combination with an alumoxane). Preferred catalyst systems contain an unbridged monocyclopentadienyl titanium (IV) complex and triphenylcarbenium tetrakis (pentafluorophenyl) borate.