摘要:
In the method for dynamically determining interference and carrier-to-interference ratio, interference is measured during an active TDMA time slot. In one embodiment, a base station determines the interference level in an active time slot using power level measurement taken during a DTX OFF period, when a mobile station is transmitting in discontinuous transmission mode. In another embodiment, a base station orders a mobile station to cease transmission during a SACCH portion of the time slot, and determines an interference level I measurement using power level measurements taken during the inactive SACCH field. Another embodiment provides for the determination of an interference level I using power level measurements taken during the guard and ramp fields.
摘要:
A measurement radio system uses a measurement radio to scan active channels of a base station and produce operating information for the traffic radios servicing the active channels. The measurement radio can produce operating information, such as signal strength, bit error rate (BER), frame error rate (FER) and signal to interference ratio (C/I), which is used to determine whether to change the manner in which the traffic radio is servicing the active channel. For example, if the measurement radio can switch between different sets of antennas, the measurement radio can scan an active voice/data channel using a different set of antennas than the traffic radio is using to service the active channel and determine operating information related to the signal received over the active channel using the different set of antennas. The traffic radio can use the operating information to determine whether to hand off the active channel to the different set of antennas. The measurement radio can determine operating information, such as operating coefficients, parameters or settings, to change how the traffic radio services the active channel.
摘要:
In a time division multiple access communication system, adjacent and co-channel interference are reduced by discontinuing or shutting off modulation of carrier frequency signals during inactive time slots so that transmitted power of carrier frequency signals are reduced. Also, the time slots and carrier frequency signals are organized so that each carrier frequency signal has the least amount of time slots designated as active time slots. The time slots are designated so that the respective same time slots of adjacent carrier frequency signals are not concurrently designated as active time slots.
摘要:
A system for determining coverage in a wireless communications systems uses location information for a wireless unit and collects information on communications between the wireless unit and the wireless communications system in association with the location information. The wireless communications system determines and/or receives location information for the wireless unit along with other information associated with the location information. The information by location can be used to represent the coverage of a geographic region. For example, during communications between a serving base station and a wireless unit, the serving base station could receive and/or determine signal quality measurements of a forward link and/or of a reverse link at a particular location. Additionally, neighboring base stations can monitor the communications and determine and/or receive location information for the location of the wireless unit along with the information associated with or corresponding to the location of the wireless unit. The associated information can be linked with additional parameters, such as wireless unit type, wireless unit identity, frequency, operating conditions and/or base station identity.
摘要:
A time slotted system capable of switching between two or more antennas during the guard times of the time slots. Switching between antennas during the guard time of the time slots eliminates any disturbance to the user, since it eliminates any loud noise, or popping that can occur during the switching between antennas. The beamwidth of each of the antennas is narrower than needed to cover a sector of a cell of the system, increasing the size of the cell due to the larger gain of the narrower beamwidth antenna elements. The system also includes a scanning radio for determining the optimal signal amongst the signals received on the antennas, and a switch for coupling the antenna receiving the optimal signal to a receiver system. In one embodiment of the invention the optimal signal is based on the information content of the signal, such as the signal's bit error rate. In another embodiment of the invention, the optimal antenna is selected, and a plurality of a combined signals is obtained by combining the signal received on the optimal antenna and a signal received on one of the other antennas, until all of the antennas have been paired with the optimal antenna. The optimal combined signal is selected, and the antenna pair that received the signals that produced the optimal combined signal are coupled to the receiver system.
摘要:
A phase-modulated signal such as a quadrature phase-shift-keyed (QPSK) signal in a wireless communication system is demodulated using sample timing based at least in part on frequency information generated by frequency demodulating the phase-modulated signal. The phase-modulated signal is separated into first and second portions, the first portion is phase demodulated to generate demodulated symbols, and the second portion is frequency demodulated to generate, e.g., a measure of the instantaneous frequency of the phase-modulated signal. The instantaneous frequency measure is processed to identify one or more symbol transitions, and the identified transitions are used to establish the sample timing such that proper sampling of the symbols is ensured.
摘要:
The synchronization system uses a TDMA or AMPS air interface to provide timing synchronization between previously unsynchronized base stations. The synchronization of base stations is critical between when determining the geographical position of a mobile because the geographical position is determined using a time difference of arrival method. In order to synchronize a remote base station with a serving base station, the remote base station receives a signal from the serving base station and measuring the receiving time of the signal at the remote base station in relation to the clock of the remote base station. The synchronization system determines the transmission time of the signal based on the reception time of the signal and the distance between the base stations, in relation to the clock signal of the second station, and synchronizes the clock of the remote base station to the clock of the serving base station based on the offset in the clock cycles at the time the signal was transmitted.
摘要:
A technique for synchronizing the timing signals in the base stations of a wireless telecommunications system is disclosed. In accordance with the illustrative embodiment of the present invention, each base station derives the frequency of its timing signal from one periodic signal, but the phase of its timing signal from a second periodic signal. In general, the base station derives its timing signal based on: (1) the frequency of a reference timing signal, and (2) the phase of a feedback signal. The reference timing signal can be obtained from a common timing source or from different timing sources which are designed to have the same frequency. The feedback signal is advantageously the confluence of two feedback loops. In accordance with the first feedback loop, the feedback signal is based on the phase of the base station's own timing signal. In accordance with the second feedback loop, the feedback signal is based on the phase of the timing signals from one or more nearby base stations. Advantageously, the feedback signal is based on the Boolean AND or NAND function of the base station's own timing signal and the timing signals of the nearby base stations.
摘要:
A phase-modulated signal such as a quadrature phase-shift-keyed (QPSK) signal in a wireless communication system is demodulated by frequency demodulating the phase-modulated signal. The phase-modulated signal is separated into first and second copies, the first copy is phase demodulated to generate demodulated symbols, and the second copy is frequency demodulated to generate, e.g., a measure of the instantaneous frequency of the phase-modulated signal. The instantaneous frequency measure is processed to identify one or more symbol transitions, and the identified transitions are used to generate event signals having signature properties (signature events). These signature events are used in traditional Time Difference of Arrival tdoa algorithms to accurately determine position of a mobile unit in the wireless communication system.
摘要:
A simplified method for sampling timing adjustment and frequency offset estimation in a TDMA cellular PCS environment using &pgr;/4 - shifted DQPSK comprises the steps of oversampling a received signal resulting from transmission of sequences of complex-valued symbols at a rate N times the symbol rate thereof so as to produce N sets of samples, comparing for each set of samples the differential phase angle between successively received complex-valued symbols, and determining which set of the N sets of samples has differential phase angles closest to ideal values to thereby obtain an optimal sampling timing. The differential phase angles are measured by multiplying a complex conjugate of a received complex-valued symbol and a succeeding symbol to produce a comparison vector having an angle equal to the differential phase angle between the received complex-valued symbol and the succeeding symbol. The differential phase angles are optionally rotated so that the angle thereof is between 0° and 90°. Frequency offset is estimated by determining a constant deviation of the differential phase angles from an ideal differential phase angle value for a plurality of successive comparison vectors by correlating the rotated comparison vectors against a bank of unit vectors to determine a maximum correlation.