摘要:
A microphase separated polymer has nano-domains and inorganic nanoparticles within at least one of the domains. The nanoparticle size is chosen to be substantially smaller than the domain size. For example, for the case of lamellar domains, the nanoparticle size is smaller than the width of the domain. This allows the nanoparticles to affect the bulk properties of the domain phase, such as the overall ionic conductivity or mechanical properties. The nanoparticles can be any of a number of inorganic oxides such as alumina, silica, or titania.
摘要:
A composition of matter for a recording medium in atomic force data storage devices. The composition includes one or more poly(aryl ether ketone) copolymers, each of the one or more poly(aryl ether ketone) copolymers including (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a hydrogen bonding cross-linking moiety, the moiety capable of forming two or more hydrogen bonds at room temperature, each of the one or more poly(aryl ether ketone) copolymers having two terminal ends, each terminal end having a phenylethynyl moiety. The covalent and hydrogen bonding cross-linking of the poly(aryl ether ketone) oligomers may be tuned to match thermal and force parameters required in read-write-erase cycles.
摘要:
The disclosure relates to methods and materials useful for polymerizing a monomer. In one embodiment, for example, the disclosure provides a method for polymerizing a monomer containing a plurality of electrophilic groups, wherein the method comprises contacting the monomer with a nucleophilic reagent in the presence of a guanidine-containing catalyst. The methods and materials of the disclosure find utility, for example, in the field of materials science.
摘要:
The disclosure relates to methods and materials useful for depolymerizing a polymer. In one embodiment, for example, the disclosure provides a method for depolymerizing a polymer containing electrophilic linkages, wherein the method comprises contacting the polymer with a nucleophilic reagent in the presence of a guanidine-containing compound. The methods and materials of the disclosure find utility, for example, in the field of waste reclamation and recycling.
摘要:
An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
摘要:
A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
摘要:
A composition of matter for a recording medium in atomic force data storage devices. The composition includes polyimide oligomers having covalently bonded monomers forming a backbone, the oligomer thermally stable to at least 400° C.; one or more covalent bonding cross-linking moieties incorporated into the polyimide oligomer; and one or more hydrogen bonding cross-linking moieties incorporated into the polyimide oligomer. The covalent and hydrogen bonding cross-linking of the polyimide oligomers may be tuned to match thermal and force parameters required in read-write-erase cycles.
摘要:
A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
摘要:
An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyaryletherketone polymers are used as the recording layers in atomic force data storage devices, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyaryletherketone polymers may be tuned to match thermal and force parameters required in read-write-erase cycles.
摘要:
A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone copolymers, each of the one or more polyaryletherketone copolymers comprising (a) a first monomer including an aryl ether ketone and (b) a second monomer including an aryl ether ketone and a first phenylethynyl moiety, each of the one or more polyaryletherketone copolymers having two terminal ends, each terminal end having a phenylethynyl moiety the same as or different from the first phenylethynyl moiety. The one or more polyaryletherketone copolymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layer in an atomic force data storage device.