摘要:
A local probe storage array is provided that includes a substrate, and a polymeric layer over the substrate, the polymeric layer comprising a crosslinking agent comprising at least three alkyne groups.
摘要:
The present disclosure provides systems and methods associated with data storage using atomic films, such as graphene, boron nitride, or silicene. A platter assembly may include at least one platter that has one or more substantially planar surfaces. One or more layers of a monolayer atomic film, such as graphene, may be positioned on a planar surface. Data may be stored on the atomic film using one or more vacancies, dopants, defects, and/or functionalized groups (presence or lack thereof) to represent one of a plurality of states in a multi-state data representation model, such as a binary, a ternary, or another base N data storage model. A read module may detect the vacancies, dopants, and/or functionalized groups (or a topographical feature resulting therefrom) to read the data stored on the atomic film.
摘要:
An approach is presented for designing a polymeric layer for nanometer scale thermo-mechanical storage devices. Cross-linked polyimide oligomers are used as the recording layers in atomic force data storage device, giving significantly improved performance when compared to previously reported cross-linked and linear polymers. The cross-linking of the polyimide oligomers may be tuned to match thermal and force parameters required in read-write-erase cycles. Additionally, the cross-linked polyimide oligomers are suitable for use in nano-scale imaging.
摘要:
The invention relates to a method of determining wear of a data storage medium actively by performing a read operation on the data storage medium and detecting a read signal, comparing the read signal to at least one wear threshold; and determining a wear level of an area of the data storage medium based on the comparison. The wear threshold is lower than a detection threshold, wherein the detection of the read signal above the detection threshold indicates the presence of stored data.
摘要:
A storage device including a storage medium for storing data in the form of topographic or magnetic marks. At least one probe is mounted on a common frame, the common frame and the storage medium designed for moving relative to each other for creating or detecting said marks. Each probe includes a tip facing the storage medium, a read sensing element, a write element and a capacitive platform, that forms a first electrode and is designed for a voltage potential applied to it independent from a control signal for said read sensing element and for said voltage potential applied to said capacitive platform being independent from a control signal for said write heating element. It further comprises a second electrode arranged in a fixed position relative to the storage medium forming a first capacitor together wherein said first electrode and a medium between the first and second electrode.
摘要:
The present invention relates to a device for forming topographic features on a surface of a polymer layer comprising: a polymer layer (1); a substrate (2) comprising a conductor, a first surface (1a) of the polymer layer (1) being provided on the substrate (2); and at least one electrode (3) which, when the device is in use, interacts with a second surface (1b) of the polymer layer (1), wherein, when in use, the device is operable to apply a first electrical potential (P1) to the at least one electrode (3) relative to the substrate (2), thereby to cause a protrusion (4) to be formed on the second surface (1b) of the polymer layer (1).
摘要:
A magnetic data storage system having a scanning tip array based system and a shape memory thin film-based data storage medium. Prior to storing data, the medium is in its non-ferromagnetic austenitic phase. Indentation stress locally induces martensitic transformation of the medium, which in turn generates a locally ferromagnetized surface. By measuring the magnetic force interaction between the tip and the medium surface, inscribed magnetic information can be read. The shape memory thin film enables the stress-induced local magnetic transition to provide a fast data storage system with high data storage density.
摘要:
A composition of matter for the recording medium of nanometer scale thermo-mechanical information storage devices and a nanometer scale thermo-mechanical information storage device. The composition includes: one or more polyaryletherketone polymers, each of the one or more polyaryletherketone polymers having two terminal ends, each terminal end having two or more phenylethynyl moieties. The one or more polyaryletherketone polymers are thermally cured and the resulting cross-linked polyaryletherketone resin used as the recording layers in atomic force data storage devices.
摘要:
A nanoscale digital data storage device is provided. In the nanoscale digital data storage device, a storage medium has a polymer layer deposited on a substrate, for writing and reading digital data on and from. A cantilever chip has a plurality of cantilevers arranged therein. Each cantilever is fixed to another substrate at one end and has a tip formed at its free end, for emitting heat according to an applied current. The tips in the cantilever chip are in contact with the storage medium at predetermined bit positions during data writing, and the cantilever chip applies a relatively low current to a tip when the tip writes bit 1 and a relatively high current to the tip when the tip writes bit 0.
摘要:
A data storage system that includes a positioning system for positioning the write/read mechanism and the storage medium of the data storage device with respect to each other in first and second predefined directions. The positioning system comprises a positioning apparatus comprising microfabricated first and second positioning assemblies. The positioning system further comprises a controller to position a positionable support structure of the first positioning assembly in a first predefined direction within a range of positioning that is larger than the range of movement of a moveable support structure of the first positioning assembly by controlling (A) a stationary support structure clamp in clamping and unclamping the positionable structure to and from the support structure, (B) a moveable structure clamp in clamping and unclamping the positionable support structure to and from the moveable support structure, and (C) the movement of the moveable support structure.