摘要:
A method and a system augment or improve a distance until charge (DUC) estimation for a vehicle such as a plug-in hybrid electric vehicle (PHEV) by using location information. Such location information may be provided by a global positioning system (GPS) or the like associated with the vehicle. The method and the system generally estimate the DUC value as a function of past driving pattern historical data that is relevant to a current driving situation. To this end, the method and the system ignore past driving pattern historical data that is not relevant to the current driving situation when estimating the DUC value.
摘要:
A method and a system augment or improve a distance until charge (DUC) estimation for a vehicle such as a plug-in hybrid electric vehicle (PHEV) by using location information. Such location information may be provided by a global positioning system (GPS) or the like associated with the vehicle. The method and the system generally estimate the DUC value as a function of past driving pattern historical data that is relevant to a current driving situation. To this end, the method and the system ignore past driving pattern historical data that is not relevant to the current driving situation when estimating the DUC value.
摘要:
A computer implemented trip-planning method includes accessing one or more destination elements of a matrix of driver information, the accessing based at least in part on a trip start time and day of week. Each accessed element has a probability associated therewith, indicating the likelihood of the element being the destination at which a vehicle trip will end, based at least the start time and day of week. The method also includes selecting, from the one or more elements, a destination having the highest probability of being the destination at which the vehicle trip will end. Further, the method includes utilizing the selected destination as an end destination for the purposes of trip planning.
摘要:
A computer implemented trip-planning method includes accessing one or more destination elements of a matrix of driver information, the accessing based at least in part on a trip start time and day of week. Each accessed element has a probability associated therewith, indicating the likelihood of the element being the destination at which a vehicle trip will end, based at least the start time and day of week. The method also includes selecting, from the one or more elements, a destination having the highest probability of being the destination at which the vehicle trip will end. Further, the method includes utilizing the selected destination as an end destination for the purposes of trip planning.
摘要:
A computer-implemented method includes determining that a vehicle powertrain feature is engaged. The method further includes relaying, to a remote computing source, a request for a computation to be performed relating to the engaged powertrain feature. The method additionally includes receiving a result of the computation at a vehicle computing system and transferring the result of the computation to a powertrain for use in controlling the powertrain feature.
摘要:
A computer-implemented method includes determining that a vehicle powertrain feature is engaged. The method further includes relaying, to a remote computing source, a request for a computation to be performed relating to the engaged powertrain feature. The method additionally includes receiving a result of the computation at a vehicle computing system and transferring the result of the computation to a powertrain for use in controlling the powertrain feature.
摘要:
A computer implemented method includes examining a travel route to determine the presence of emission control zones along the route. The method further includes determining how much power will be required to operate a vehicle along the portions of the route within the emission control zones. Also, this method includes preserving the determined amount of power required to operate the vehicle along the portions of the route within the emission control zones. Further, the method includes selectively activating a vehicle electric power mode using the preserved power while the vehicle is operating within the emission control zones.
摘要:
A method for predicting a final destination of a vehicle comprises the steps of acquiring a start location of the vehicle, providing a predetermined waypoint distance from the start location, determining a current waypoint location once the vehicle travels the predetermined waypoint distance, receiving historical destination data from a database, including previous destinations associated with the current waypoint location. Then, making a prediction at the current waypoint location of the final destination based on the historical destination data.
摘要:
A drive-home button is provided in the dashboard of a plug-in hybrid electric vehicle (PHEV). The driver presses this button when heading home or to other predetermined destination at which charging is routinely performed. The actual route, the driving style, and other relevant vehicle/road information during the trip home are stored to build up a statistical database. During a present trip home, a highly probably route is predicted based on prior trips and an energy management profile is calculated. The commands to the internal combustion engine and the electric motor are selected to cause the vehicle's battery to be substantially discharged upon arriving at home based on actual data of energy usage by the operator of the vehicle during prior trips. By using actual data, the prediction of energy usage is more accurate allowing more complete discharge of the battery.
摘要:
A method for predicting a final destination of a vehicle comprises the steps of acquiring a start location of the vehicle, providing a predetermined waypoint distance from the start location, determining a current waypoint location once the vehicle travels the predetermined waypoint distance, receiving historical destination data from a database, including previous destinations associated with the current waypoint location. Then, making a prediction at the current waypoint location of the final destination based on the historical destination data.