Magnetic alloy material and method of making the magnetic alloy material
    1.
    发明授权
    Magnetic alloy material and method of making the magnetic alloy material 有权
    磁性合金材料及其制造方法

    公开(公告)号:US07670443B2

    公开(公告)日:2010-03-02

    申请号:US11673729

    申请日:2007-02-12

    IPC分类号: H01F1/053

    CPC分类号: H01F1/015 H01F1/0571

    摘要: A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.

    摘要翻译: 制造磁性合金材料的方法包括以下步骤:制备具有预定组成的合金材料的熔体; 快速冷却和固化熔体,得到一种由Fe100-ab-cREaAbTMc表示的快速固化的合金,其中RE是选自La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb中的至少一种稀土元素, Dy,Ho,Er和Tm,并且包括至少约90原子%的La; A是选自Al,Si,Ga,Ge和Sn中的至少一种元素; TM是选自Sc,Ti,V,Cr,Mn,Co,Ni,Cu和Zn中的至少一种过渡金属元素; 和5 at%≦̸ a≦̸ 10 at%,4.7 at%≦̸ b≦̸ 18 at%和0 at%≦̸ c≦̸ 9 at%; 并在至少约70vol%的快速凝固合金中生产具有NaZn13型晶体结构的复合相。

    Magnetic alloy material and method of making the magnetic alloy material
    2.
    发明授权
    Magnetic alloy material and method of making the magnetic alloy material 有权
    磁性合金材料及其制造方法

    公开(公告)号:US07186303B2

    公开(公告)日:2007-03-06

    申请号:US10642276

    申请日:2003-08-18

    IPC分类号: H01F1/055

    CPC分类号: H01F1/015 H01F1/0571

    摘要: A method of making a magnetic alloy material includes the steps of: preparing a melt of an alloy material having a predetermined composition; rapidly cooling and solidifying the melt to obtain a rapidly solidified alloy represented by: Fe100-a-b-cREaAbTMc where RE is at least one rare-earth element selected from La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er and Tm and including at least about 90 at % of La; A is at least one element selected from Al, Si, Ga, Ge and Sn; TM is at least one transition metal element selected from Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn; and 5 at %≦a≦10 at %, 4.7 at %≦b≦18 at % and 0 at %≦c≦9 at %; and producing a compound phase having an NaZn13-type crystal structure in at least about 70 vol % of the rapidly solidified alloy.

    摘要翻译: 制造磁性合金材料的方法包括以下步骤:制备具有预定组成的合金材料的熔体; 快速冷却和固化熔体以获得由以下物质表示的快速固化的合金:Fe / SUB>其中RE是选自La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er和Tm中的至少一种稀土元素,并且包括至少约90at%的La ; A是选自Al,Si,Ga,Ge和Sn中的至少一种元素; TM是选自Sc,Ti,V,Cr,Mn,Co,Ni,Cu和Zn中的至少一种过渡金属元素; 和5原子%<= a <= 10原子%,4.7原子%<= b <= 18原子%和0原子%<= c <= 9原子% 并在至少约70vol%的快速凝固合金中生产具有NaZn 13 N型晶体结构的化合物相。

    Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
    4.
    发明授权
    Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet 有权
    通过带材铸造生产用于纳米复合型永磁体的原料合金的方法

    公开(公告)号:US07547365B2

    公开(公告)日:2009-06-16

    申请号:US11288710

    申请日:2005-11-28

    IPC分类号: H01F1/032 H01F1/057

    摘要: To make a raw alloy, consisting mostly of amorphous structure, highly productively and at a reduced cost for a nanocomposite magnet, a molten alloy represented by Fe100-x-y-zRxQyMz (where R is at least one element selected from Pr, Nd, Dy and Tb; Q is B and/or C; M is at least one element selected from Co, Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Ag, Pt, Au and Pb; and 1 at %≦x

    摘要翻译: 为了制备主要由非晶结构组成的原料合金,以纳米复合磁体为代价的低成本的Fe100-xy-zRxQyMz(其中R是选自Pr,Nd,Dy中的至少一种元素)和 Tb; Q为B和/或C; M为选自Co,Al,Si,Ti,V,Cr,Mn,Ni,Cu,Ga,Zr,Nb,Mo,Ag,Pt,Au和 Pb;和1 at%<= x <6at%,15at%<= y <= 30at%和0 at%<= z <= 7at%)。 该熔融合金通过带钢铸造方法快速冷却,其中将合金送入冷却辊,以3m / s至小于20m / s的圆周速度,以每单位接触宽度0.2的进料速率 kg / min / cm〜5.2kg / min / cm。 以这种方式,可以获得包含至少60体积%的非晶相的合金。

    Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder
    6.
    发明授权
    Sheet magnet having microcrystalline structure and method of manufacturing the same, and method of manufacturing isotropic permanent magnet powder 有权
    具有微晶结构的片状磁体及其制造方法以及制造各向同性永磁体粉末的方法

    公开(公告)号:US06168673A

    公开(公告)日:2001-01-02

    申请号:US09284604

    申请日:1999-05-20

    IPC分类号: H01F1053

    摘要: An object of this invention is to provide a thin-film magnet having a residual magnetic flux density Br of not less than 10 kG, a cost performance equal to that of a hard ferrite magnet, and a thickness of 70-300 &mgr;m contributing to the miniaturization and thinning of a magnetic circuit, and a method of manufacturing the same. When a molten alloy of a predetermined structure having a small content of a rare earth element is subjected to continuous casting using a cooling roll in an inert gas atmosphere with reduced pressures of not more than 30 kPa at a predetermined peripheral speed of the roll, it turns into a crystalline structure substantially not less than 90% of which comprises a Fe3B type compound and a compound phase having &agr; —Fe and Nd2Fe14B type crystalline structures compatible with the former. A continuous thin-film magnet of 70-300 &mgr;m in thickness comprising a microcrystalline structure of 10-50 nm in average crystal grain diameter having magnetic characteristics of iHc≧2 kOe, Br≧10 kG and practically usable as a permanent magnet can be obtained. A thin-film magnet which has heretofore been difficult to be industrially produced can be mass-produced at a low price by a simple method.

    摘要翻译: 本发明的目的是提供一种具有不小于10kG的剩余磁通密度Br,与硬质铁氧体磁体相同的成本性能和70-300μm的厚度的薄膜磁体, 磁路的小型化和薄化及其制造方法。 使用稀土元素含量少的预定结构的熔融合金,在辊的预定圆周速度下,在惰性气体气氛中以不超过30kPa的减压下,使用冷却辊进行连续铸造, 变成基本上不小于90%的晶体结构,其包含Fe 3 B型化合物和具有与前者相容的α-Fe和Nd 2 Fe 14 B型结晶结构的化合物相。 具有70-300μm厚度的连续薄膜磁体,其包含具有iHc> = 2kOe,Br> = 10kG的磁特性并且实际上可用作永磁体的平均晶粒直径为10-50nm的微晶结构 得到。 迄今为止难以在工业上生产的薄膜磁体可以通过简单的方法以低价格批量生产。

    Method of making material alloy for iron-based rare earth magnet
    8.
    发明授权
    Method of making material alloy for iron-based rare earth magnet 有权
    铁基稀土磁体材料合金的制备方法

    公开(公告)号:US06695929B2

    公开(公告)日:2004-02-24

    申请号:US10203023

    申请日:2002-08-05

    IPC分类号: H01F1057

    摘要: A melt of an iron-based rare earth material alloy, represented by (Fe1-mTm)100-x-y-zQxRyMz, is prepared, wherein T is Co and/or Ni; Q is B and/or C; R is selected from Y (yttrium) and the rare earth elements; M is selected from Al, Si, Ti, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb; 10≦x≦30 at %; 2%≦y

    摘要翻译: 制备由(Fe1-mTm)100-x-y-zQxRyMz表示的铁基稀土材料合金的熔体,其中T是Co和/或Ni; Q是B和/或C; R选自Y(钇)和稀土元素; M选自Al,Si,Ti,V,Cr,Mn,Cu,Zn,Ga,Zr,Nb,Mo,Ag,Hf,Ta,W,Pt,Au和Pb; 10 <= x <= 30 at%; 2%<= y <10 at%; 0 <= z <= 10 at%,0 <= m <= 0.5。 熔体被供给到引导件上以在其上形成熔体流,并将熔体移动到熔融/冷却辊接触区域上,在该区域中,熔体被冷却辊快速冷却以形成快速固化的合金。 待进料到导向器上的熔体的氧浓度以质量百分比控制在约3,000ppm或更低。

    Nanocomposite magnet material and method for producing nanocomposite magnet
    9.
    发明授权
    Nanocomposite magnet material and method for producing nanocomposite magnet 有权
    纳米复合磁体材料及其制备方法

    公开(公告)号:US06302972B1

    公开(公告)日:2001-10-16

    申请号:US09455469

    申请日:1999-12-06

    IPC分类号: H01F1057

    摘要: An inventive material alloy for a nanocomposite magnet is represented by a general formula Fe100−x−yRxBy, Fe100−x−y−zRxByCoz, Fe100−x−y−uRxByMu or Fe100−x−y−z−uRxByCozMu. R is a rare-earth element. 90 atomic percent or more of R is Pr and/or Nd, while equal to or larger than 0 atomic percent and less than 10 atomic percent of R is another lanthanoid and/or Y. M is at least one element selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Ga, Zr, Nb, Mo, Hf, Ta, W, Pt, Pb, Au and Ag. The molar fractions x, y, z and u meet the inequalities of 2≦x≦6, 16≦y≦20, 0.2≦z≦7 and 0.01≦u≦7, respectively. The alloy includes a metastable phase Z represented by at least one of a plurality of Bragg reflection peaks observable by X-ray diffraction analysis. The at least one peak corresponds to a lattice spacing of 0.179 nm±0.005 nm. An intensity of the Bragg reflection peak represents 5 to 200 percent, both inclusive, of a maximum intensity of a halo pattern. An intensity of a (110) Bragg reflection peak of body-centered Fe represents less than 5 percent of the maximum intensity of the halo pattern.

    摘要翻译: 用于纳米复合磁体的本发明的材料合金由通式Fe100-x-yRxBy,Fe100-x-y-zRxByCoz,Fe100-x-y-uRxByMu或Fe100-x-y-z-uRxByCozMu表示。 R是稀土元素。 R原子百分比以上为90原子%以上,R为10原子%以上,R为10原子%以下,R为10原子%以上,R为镧系元素和/或Y。 的Al,Si,Ti,V,Cr,Mn,Ni,Cu,Ga,Zr,Nb,Mo,Hf,Ta,W,Pt,Pb,Au和Ag。 摩尔分数x,y,z和u分别满足2 <= x <= 6,16 <= y <= 20,0.2 <= z <= 7和0.01 <= u <7的不等式。 该合金包括通过X射线衍射分析可观察到的多个布拉格反射峰中的至少一个所表示的亚稳相Z。 至少一个峰对应于0.179nm±0.005nm的晶格间距。 布拉格反射峰的强度表示晕圈图案的最大强度的5〜200%。 以身体为中心的Fe的(110)布拉格反射峰的强度小于光晕图案的最大强度的5%。

    Iron-based permanent magnets and their fabrication as well as iron-based
permanent magnet alloy powders for permanent bonded magnets and
iron-based bonded magnets
    10.
    发明授权
    Iron-based permanent magnets and their fabrication as well as iron-based permanent magnet alloy powders for permanent bonded magnets and iron-based bonded magnets 失效
    铁基永磁体及其制造方法以及用于永久粘结磁体和铁基粘结磁体的铁基永磁体合金粉末

    公开(公告)号:US6019859A

    公开(公告)日:2000-02-01

    申请号:US655229

    申请日:1996-06-05

    IPC分类号: B22F9/00 H01F1/057

    摘要: With the intention of establishing fabrication methods for cheaply produced (Fe,Co)--Cr--B--R-type bonded magnets or (Fe,Co)--Cr--B--R--M-type bonded magnets containing few rare earth elements and having a coercive force iHc above 5 kOe and a residual magnetic flux density Br above 5.5 kG matching the cost performance of hard ferrite magnets, we have obtained iron-based permanent magnets consisting of microcrystal clusters where the average crystal size of each component phase is in the range 1 nm .about.30 nm and where both a soft magnetic phase consisting of a ferromagnetic alloy whose main components are .alpha.-Fe and a ferromagnetic alloy having iron, and a hard magnetic phase having a Nd.sub.2 Fe.sub.14 B-type crystal structure coexist within the same powder particles, by melt--quenching of a (Fe,Co)--Cr--B--R(Pr,Nd)-type molten alloy or a (Fe,Co)--Cr--B--R--M (M=Al,Si,S,Ni, Cu,Zn,Ga,Ag,Pt,Au,Pb)-type molten alloy of a particular composition containing few rare earth elements, to obtain an essentially amorphous structure or a structure both amorphous and with small amounts of fine crystals, and by applying a crystallization heat treatment under specific conditions. By grinding this iron-based permanent magnet to an average powder particle size of 3 .mu.m.about.500 .mu.m and combining the resultant iron-based permanent magnet alloy powder with a resin, we can obtain an iron-based bonded magnet with good thermal and magnetic properties and with the magnetic characteristics iHc.gtoreq.5 kOe, Br.gtoreq.5.5 kG and (BH)max.gtoreq.6 MGOe.

    摘要翻译: 为了建立廉价生产的(Fe,Co)-Cr-BR型粘结磁体或含有少量稀土元素的(Fe,Co)-Cr-BRM型粘结磁体并具有高于5的矫顽力iHc的制造方法 kOe和5.5kG以上的剩余磁通密度Br匹配硬质铁氧体磁体的成本性能,我们已经获得了由微晶簇组成的铁基永磁体,其中每个组分相的平均晶体尺寸在1nm范围内差异30nm 并且其中由主要成分为α-Fe的铁磁性合金构成的软磁相和具有铁的铁磁性合金以及具有Nd 2 Fe 14 B型晶体结构的硬磁相共存于同一粉末颗粒内的两者,通过熔融淬火 (Fe,Co)-Cr-BR(Pr,Nd)型熔融合金或(Fe,Co)-Cr-BRM(M = Al,Si,S,Ni,Cu,Zn,Ga,Ag,Pt ,Au,Pb)型熔融合金,以获得基本上a 形态结构或无定形和少量微晶的结构,并在特定条件下进行结晶热处理。 通过将该铁基永磁体研磨至平均粉末粒径为3μm×500μm,并将所得到的铁基永磁体合金粉末与树脂组合,可得到具有良好热效应的铁基粘结磁体, 磁特性和磁特性iHc> = 5kOe,Br> / = 5.5kG和(BH)max> / = 6MGOe。