摘要:
A soft magnetic alloy has a main component of Fe. The soft magnetic alloy contains P. A Fe-rich phase and a Fe-poor phase are contained. An average concentration of P in the Fe-poor phase is 1.5 times or larger than an average concentration of P in the soft magnetic alloy by number of atoms.
摘要:
A method for forming an austempered iron composition with a nanoscale microstructure includes a step of heating an iron-carbon-silicon alloy with silicon to a first temperature that is lower than A1 for the iron-carbon-silicon alloy. The iron-carbon-silicon alloy is then adiabatically deformed such that the temperature of the iron-carbon-silicon alloy rises to a second temperature which is sufficient to form proeutectoid ferrite and austenite. The iron-carbon-silicon alloy is cooled to a first austempering temperature. The iron-carbon-silicon alloy is then heated to a second austempering temperature that is greater than the first austempering temperature to form a dual phase microstructure. Characteristically, the dual phase microstructure includes proeutectoid ferrite and ausferrite.
摘要:
An Fe-based nano-crystalline alloy formed from an alloy composition of (FeE)(100-X-Y-Z)BXPYCuZ having an amorphous phase as a main phase, wherein 79≦100-X-Y-Z≦86 atomic %, 4≦X≦9 atomic %, 1≦Y≦10 atomic %, and 0.5≦Z
摘要:
An R—Fe—B base sintered magnet is provided consisting essentially of R (which is at least two rare earth elements and essentially contains Nd and Pr), M1 which is at least two of Si, Al, Mn, Ni, Cu, Zn, Ga, Ge, Pd, Ag, Cd, In, Sn, Sb, Pt, Au, Hg, Pb, and Bi, M2 which is at least one of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W, boron, and the balance of Fe, and containing an intermetallic compound R2(Fe,(Co))14B as a main phase. The magnet contains an R—Fe(Co)-M1 phase as a grain boundary phase, the R—Fe(Co)-M1 phase contains A phase which is crystalline with crystallites of at least 10 nm formed at grain boundary triple junctions, and B phase which is amorphous and/or nanocrystalline with crystallites of less than 10 nm formed at intergranular grain boundaries and optionally grain boundary triple junctions.
摘要:
A non-oriented electrical steel sheet containing: in mass %, C: 0.005% or less; Si: 0.1% to 2.0%; Mn: 0.05% to 0.6%; P: 0.100% or less; and Al: 0.5% or less, in which 10 pieces/μm3 or less in number density of non-magnetic precipitate AlN having an average diameter of 10 nm to 200 nm are contained, and an average magnetic flux density B50 in a rolling direction and in a direction perpendicular to rolling is 1.75 T or more. This non-oriented electrical steel sheet can be manufactured by two methods of a method of performing hot rolling annealing at a temperature of 750° C. to an Ac1 transformation point and a method of setting a coil winding temperature to 780° C. or higher and performing self annealing.
摘要:
An apparatus and method of uniformly heating, rheologically softening, and thermoplastically forming metallic glasses rapidly into a net shape using a rapid capacitor discharge forming (RCDF) tool are provided. The RCDF method utilizes the discharge of electrical energy stored in a capacitor to uniformly and rapidly heat a sample or charge of metallic glass alloy to a predetermined “process temperature” between the glass transition temperature of the amorphous material and the equilibrium melting point of the alloy in a time scale of several milliseconds or less. Once the sample is uniformly heated such that the entire sample block has a sufficiently low process viscosity it may be shaped into high quality amorphous bulk articles via any number of techniques including, for example, injection molding, dynamic forging, stamp forging, and blow molding in a time frame of Less than 1 second.
摘要:
The present invention is about the design and manufacturing method of constructing nano-structured lattices. The design of the four periodic two-dimensional lattices (hexagonal, triangulated, square and Kagome) is described; and the process of making nano-structured lattices is outlined in the present invention.
摘要:
A method for preparing a magnesium-based hydrogen storage material, includes: a Mg—Ce—Ni family amorphous alloy is prepared by a rapid cooling process; the amorphous alloy is pulverized, so as to obtain a amorphous powder; the amorphous alloy is activated, so as to obtain a MgH2—Mg2NiH4—CeH2.73 family nanocrystalline composite; the abovementioned composite is carried out a hydrogen absorption and desorption cycle, then the composite is placed in a pure Ar atmosphere for passivation, finally, the passivated composite is oxidized, so as to obtain a MgH2—Mg2NiH4—CeH2.73—CeO2 family nanocrystalline composite.
摘要:
A primary ultrafine-crystalline alloy having a composition represented by the general formula: Fe100-x-y-zAxByXz, wherein A is Cu and/or Au, X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are numbers (by atomic %) meeting the conditions of 0
摘要:
The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500° C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the MaXb constituents in the annealed precursor. This forms nanoscale MaXb precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000° C. Alloys having improved creep resistance are also disclosed.