摘要:
An electron emitting device includes an amorphous electron supply layer, an insulating layer formed on the electron supply layer, and an electrode formed on the insulating layer. The electron emits device emitting electrons when an electric field is applied between the electron supply layer and the electrode. The electron emitting device includes a concave portion provided by notching the electrode and the insulating layer to expose the electron supply layer, and a carbon layer covering the electrode and the concave portion except for an inner portion of an exposed surface 4a of the electron supply layer and being in contact with an edge portion of the exposed surface of the electron supply layer.
摘要:
[PROBLEMS] To provide an electron emitting layer with improved efficiency of electron emission and prevented damage of the device.[SOLVING MEANS] An electron emitting device including an amorphous electron supply layer 4, an insulating layer 5 formed on the electron supply layer 4, and an electrode 6 formed on the insulating layer 5, the electron emitting device emitting electrons when an electric field is applied between the electron supply layer 4 and the electrode 6, wherein the electron emitting device includes a concave portion 7 provided by notching the electrode 6 and the insulating layer 5 to expose the electron supply layer 4, and a carbon layer 8 covering the electrode 6 and the concave portion 7 except for an inner portion 4b of an exposed surface 4a of the electron supply layer 4 and being in contact with an edge portion 4c of the exposed surface 4a of the electron supply layer 4.
摘要:
An electron emission device including a lower electrode on a near side to a substrate and an upper electrode on a far side to the substrate and an insulator layer and an electron supply layer stacked between the lower electrode and the upper electrode and emitting an electron from the upper electrode side at the time of applying a voltage between the lower electrode and the upper electrode, which includes an electron emission part provided with an opening formed by an inner wall of a stepped shape in which a thickness of the insulator layer decreases stepwise; and a carbon-containing carbon region which is connected to the upper electrode side and which is brought into contact with the insulator layer and the electron supply layer.
摘要:
Provided is a method of driving an electron emission apparatus used in displays, imaging devices, flat-surface light sources and the like which can restrain a change with time. The method drives the electron emission apparatus including a plurality of electron emission devices each having an electron supply layer formed of silicon, a silicon-based mixture or a compound thereof, an insulator layer formed on the electron supply layer and a thin film metal electrode formed on the insulator layer, the plurality of electron emission devices being sealed and comprises: a driving step for supplying power between the electron supply layer and the thin film metal electrode to cause electrons to be emitted from the electron emission device and a reactivating step for applying a reactivating voltage at a level equal to or higher than an applied voltage value which causes discontinuity in differential value of the device current flowing between the electron supply layer and the thin film metal electrode with respect to the applied voltage after the driving step.
摘要:
An electron emission device comprises an electron-supply layer made of metal or semiconductor and disposed on an ohmic electrode; an insulator layer formed on the electron-supply layer; and a thin-film metal electrode formed on the insulator layer. The electron-supply layer has a rectifier function layer, whereby the electron emission device emits electrons when an electric field is applied between the electron-supply layer and the thin-film metal.
摘要:
Provided is a method of driving an electron emission apparatus that drives the apparatus including a plurality of electron emission devices each having an electron supply layer formed of silicon, a silicon-based mixture or a compound thereof, an insulator layer formed on the electron supply layer and a thin film metal electrode formed on the insulator layer. The plurality of electron emission devices are sealed and the method includes: a driving step for supplying power between the electron supply layer and the thin film metal electrode to cause electrons to be emitted from the electron emission device and a reactivating step for applying a reactivating voltage at a level equal to or higher than an applied voltage value which causes discontinuity in differential value of the device current flowing between the electron supply layer and the thin film metal electrode with respect to the applied voltage.
摘要:
An electron emission device based flat panel display apparatus is composed of a pair of a back substrate and an optically transparent front substrate opposing to each other with a vacuum space interposed therebetween, and a plurality of electron emission devices, each of which includes an electron-supply layer made of metal or semiconductor, formed on ohmic electrodes formed on a surface of the back substrate proximate to the vacuum space, an insulator layer formed on the electron-supply layer, and a thin-film metal electrode formed on the insulator layer and facing the vacuum space. The front substrate includes collector electrodes formed on its surface proximate to the vacuum space, fluorescent material layers formed on the collector electrodes, and an image display array composed of a plurality of light emitting elements corresponding to the fluorescent material layers. The electron emission device based flat panel display apparatus also comprises an insulative support member formed on the back substrate and disposed between adjacent ones of the electron emission devices, and a plurality of electrodes, each of which is disposed between adjacent ones of the thin-film metal electrodes and on the insulative support member for electrically connecting the thin-film metal electrodes.
摘要:
A display device has an emitting region constituted by a plurality of first electrodes provided on a substrate and extending in parallel, a plurality of second electrodes provided on the first electrodes and extending substantially perpendicularly to the first electrodes, and a plurality of emission sites for emitting electrons or light respectively connected to a plurality of intersections between the first and second electrodes and arranged on the substrate and has a peripheral region surrounding the emitting region on the substrate. In this display device, first and second groups of external repeating terminals for the first and second electrodes are collectively provided side by side in a part of the peripheral region.
摘要:
An image pickup device includes a pair of first and second substrate facing each other with a vacuum space interposed therebetween, and a plurality of electron-emitting devices provided over said first substrate and a photoconductive layer provided over said second substrate. Each electron-emitting device includes an insulating layer deposited over an electron source layer formed over an ohmic electrode; and a metal thin film electrode deposited over said insulating layer. The insulating layer and said metal thin film electrode have an island region of electron-emitting section in which their film thicknesses are gradually reduced toward said electron source layer.
摘要:
A display device includes a backside and a front-side substrates facing each other with a vacuum space therebetween; and a plurality of electron emission sites provided on the backside substrate. Each electron emission sites includes a bottom electrode formed on a surface of the backside substrate proximate to the vacuum space, an insulator layer formed over the bottom electrode, and a top electrode formed on the insulator layer and arranged individually apart from each other and facing the vacuum space. The display device also includes a plurality of bus electrodes for electrically connecting the neighboring top electrodes; and insulating protective films each provided between the bus electrode and the insulator layer and between the bus electrode and the backside substrate.