摘要:
A method of operating an electrochromic device comprising: coupling a logic device to the electrochromic device; applying a voltage to the electrochromic device; receiving a current from the electrochromic device in response to the provided voltage; and with the logic device, determining an exact operating condition of the electrochromic device from the received current. A method of operating a plurality of electrochromic devices comprising: adjusting a frequency of voltage applied to the plurality of electrochromic devices, wherein each of the plurality of electrochromic devices is adjusted by a different frequency; measuring a duration of time required to change tint states of each of the electrochromic devices; and identifying a location of each of the plurality of electrochromic devices in response to the measured duration of time required to change the tint states of each of the electrochromic device.
摘要:
An electrochemical device is disclosed. The electrochemical device includes a first transparent conductive layer, an electrochromic layer overlying the first transparent conductive layer, a counter electrode layer overlying the electrochromic layer, a second transparent conductive layer, and a switching speed parameter of not greater than 0.68 s/mm at 23° C.
摘要:
A method of operating an electrochromic device comprising: coupling a logic device to the electrochromic device; applying a voltage to the electrochromic device; receiving a current from the electrochromic device in response to the provided voltage; and with the logic device, determining an exact operating condition of the electrochromic device from the received current. A method of operating a plurality of electrochromic devices comprising: adjusting a frequency of voltage applied to the plurality of electrochromic devices, wherein each of the plurality of electrochromic devices is adjusted by a different frequency; measuring a duration of time required to change tint states of each of the electrochromic devices; and identifying a location of each of the plurality of electrochromic devices in response to the measured duration of time required to change the tint states of each of the electrochromic device.
摘要:
An apparatus can include an electrochromic device. When using the apparatus, the electrochromic device can be switched from a first transmission state to a continuously graded state and maintained at continuously graded transmission state. An apparatus can include an active stack with a first transparent conductive layer, a second transparent conductive layer, an anodic electrochemical layer between the first and the second transparent conductive layers, and a cathodic electrochemical layer between the first and the second transparent conductive layers. The apparatus can further include a first bus bar electrically coupled to the first transparent conductive layer, a second bus bar electrically coupled to the second transparent conductive layer, where the second bus bar is generally non-parallel to the first bus bar, and a third bus bar electrically coupled to the first transparent conductive layer, where the third bus bar is generally parallel to the first bus bar.
摘要:
An electrochromic device is structured to restrict moisture permeation between an electrochromic stack in the device and an external environment. The electrochromic device includes conductive layers and one or more encapsulation layers, where the encapsulation layers and conductive layers collectively isolate the electrochromic stack from the ambient environment. The encapsulation layers resist moisture permeation, and at least the outer portions of the conductive layers resist moisture permeation. The moisture-resistant electrochromic device can be fabricated based at least in part upon selective removal of one or more outer portions of at least the EC stack, so that at least the encapsulation layer extends over one or more edge portions of the EC stack to isolate the edge portions of the EC stack from the ambient environment. The encapsulation layer can include one or more of an anti-reflective layer, infrared cut-off filter, etc.
摘要:
The present invention provides for an electroactive device having a first conductive layer, a second conductive layer, and one or more electroactive layers sandwiched between the first and second conductive layers. One or more adjacent layers of the electroactive device may include a physical separation between a first portion and a second portion of the adjacent layers, the physical separation defining a respective tapered sidewall of each of the first and second portions. The one or more adjacent layers may include one of the first and second conductive layers. The remaining layers of the electroactive device may be formed over the physical separation of the one or more adjacent layers. The remaining layers may include the other of the first and second conductive layers.
摘要:
An electrochemical device and method of forming said device is disclosed. The method can include providing a substrate and stack overlying the substrate. The stack can include a first transparent conductive layer over the substrate, a cathodic electrochemical layer over the first transparent conductive layer, an anodic electrochemical layer over the electrochromic layer, and a second transparent conductive layer overlying the anodic electrochemical layer. The method can include depositing an insulating layer over the stack and determining a first pattern for the second transparent conductive layer. The first pattern can include a first region and a second region. The first region and the second region can be the same material. The method can include patterning the first region of the second transparent conductive layer without removing the material from the first region. The first region can have a first resistivity and the second region can have a second resistivity.
摘要:
A process for encapsulating an apparatus to restrict environmental element permeation between the apparatus and an external environment includes applying multiple barrier layers to the apparatus and preceding each layer application with a separate cleaning of the presently-exposed apparatus surface, resulting in an apparatus which includes an encapsulation stack, where the encapsulation stack includes a multi-layer stack of barrier layers. Each separate cleaning removes particles from the presently-exposed apparatus surface, exposing gaps in the barrier layer formed by the particles, and the subsequently-applied barrier layer at least partially fills the gaps, so that a permeation pathway through the encapsulation stack via gap spaces is restricted. The quantity of barrier layers applied to form the stack can be based on a determined probability that a stack of the particular quantity of barrier layers is independent of at least a certain quantity of continuous permeation pathways through the stack.
摘要:
A process for encapsulating an apparatus to restrict environmental element permeation between the apparatus and an external environment includes applying multiple barrier layers to the apparatus and preceding each layer application with a separate cleaning of the presently-exposed apparatus surface, resulting in an apparatus which includes an encapsulation stack, where the encapsulation stack includes a multi-layer stack of barrier layers. Each separate cleaning removes particles from the presently-exposed apparatus surface, exposing gaps in the barrier layer formed by the particles, and the subsequently-applied barrier layer at least partially fills the gaps, so that a permeation pathway through the encapsulation stack via gap spaces is restricted. The quantity of barrier layers applied to form the stack can be based on a determined probability that a stack of the particular quantity of barrier layers is independent of at least a certain quantity of continuous permeation pathways through the stack.
摘要:
One object of the present invention is to provide an electrochromic device having improved insulating film structure to reduce electrical leakage. The improved structure includes a lower conductive layer, upper transparent conductive layer, an electrochromic electrode layer, a counter electrode layer, and at least one ion-conductor layer sandwiched between the electrochromic electrode layer and the counter electrode layer. The lower transport conductive layer is scribed and the gap formed from the scribing is filled with the layer(s) formed above the lower conductive layer, such as the electrode layer formed directly above the lower conductive layer. The effective linewidth of the scribe is greater than the migration length of the lithium ions intercalated into the electrode layer, such that the electrode materials occupying the gap do not convert the electrode layer into an electrically conductive region.