Abstract:
A transparent diffusive OLED substrate includes (a) a transparent flat substrate made of mineral glass having a refractive index of between 1.45 and 1.65, (b) a rough low index layer including mineral particles, the mineral particles being attached to one side of the substrate by means of a sol-gel mineral binder, the mineral particles near, at or protruding from the mineral binder's surface creating a surface roughness characterized by an arithmetical mean deviation Ra comprised between 0.15 and 3 μm, the mineral particles and mineral binder both having a refractive index of between 1.45 and 1.65; (c) a high index layer made of an enamel having a refractive index comprised between 1.8 and 2.1 covering the rough low index layer.
Abstract:
A method of producing a transparent diffusive OLED substrate includes lapping one face or both faces of a flat translucent glass substrate with an abrasive slurry, so as to obtain a flat glass substrate with at least one roughened surface having a roughness profile with an arithmetical mean deviation Ra of between 0.1 μm and 2.0 μm; coating the roughened surface or one of the roughened surfaces with a high index glass frit having a refractive index of at least 1.7, the amount of the high index glass frit being sufficient to completely cover the roughness profile of the roughened surface after melting of the frit, and heating the coated substrate to a temperature above the melting temperature of the high index glass frit and below the softening temperature of the underlying substrate, so as to form high index enamel on one of the roughened surfaces.
Abstract:
A scattering conductive support for an organic light-emitting diode device includes, in this order, on a substrate, a scattering layer, a high index layer, a lower electrode with a dielectric underlayer, a dielectric crystalline layer, a single metal layer having an electrical conduction role, which is based on silver, with a thickness of less than 6 nm, and an overlayer.
Abstract:
An OLED device includes an anode, which is transparent, anode of a sheet resistance R1, a cathode of sheet resistance R2, the ratio r=R2/R1 ranging from 0.1 to 5, a first anode contact and a second anode contact, spaced from and facing the first anode contact, and a first cathode electrical contact, which is: arranged above the active zone, offset from the first anode contact and from the second anode contact, at every point of the contact surface.
Abstract:
A method of producing a transparent diffusive OLED substrate includes lapping one face or both faces of a flat translucent glass substrate with an abrasive slurry, so as to obtain a flat glass substrate with at least one roughened surface having a roughness profile with an arithmetical mean deviation Ra of between 0.1 μm and 2.0 μm; coating the roughened surface or one of the roughened surfaces with a high index glass frit having a refractive index of at least 1.7, the amount of the high index glass frit being sufficient to completely cover the roughness profile of the roughened surface after melting of the frit, and heating the coated substrate to a temperature above the melting temperature of the high index glass frit and below the softening temperature of the underlying substrate, so as to form high index enamel on one of the roughened surfaces.
Abstract:
An OLED device includes a transparent anode of given sheet resistance R1, a cathode of given sheet resistance R2, the ratio r=R2/R1 ranging from 0.1 to 5, a first anode electrical contact and a first cathode electrical contact which is offset from the anode electrical contact, for any point B1 of each anode contact, on defining a distance D1 between the point B1 and a point C1 of the contact surface which is closest to the point B1, and on defining a distance L1 between the point B1 and a point X1 of a second edge of the active zone opposite from the first edge, passing through C1, then the following criteria are defined: if 0.1≦r
Abstract translation:OLED器件包括具有给定薄层电阻R1的透明阳极,给定薄层电阻R2的阴极,比率r = R2 / R1为0.1至5,第一阳极电接触和第一阴极电接触,其偏离 阳极电接触,对于每个阳极触点的任何点B1,在点B1和最靠近点B1的接触表面的点C1之间限定距离D1,并且在点B1和点B1之间限定距离L1 有效区域与第一边缘相反的第二边缘的点X1通过C1,然后定义以下标准:如果0.1&nlE; r <1.75,则20%
Abstract:
A transparent diffusive OLED substrate includes the following successive elements or layers: (a) a transparent flat substrate made of mineral glass having a refractive index n1 of between 1.48 and 1.58, (b) a monolayer of mineral particles attached to one side of the substrate by means of a low index mineral binder having a refractive index n2 of between 1.45 and 1.61, and (c) a high index layer made of an enamel having a refractive index n4 between 1.82 and 2.10 covering the monolayer of mineral particles, the mineral particles having a refractive index n3 between n2+0.08 and n4−0.08 and protruding from the low index mineral binder so as to be directly in contact with the high index layer, thereby forming a first diffusive interface between the mineral particles and the low index binder, and a second diffusive interface between the mineral particles and the high index layer.
Abstract:
An OLED device includes a transparent anode, of sheet resistance R1, and a cathode, of sheet resistance R2, the ratio r=R2/R1 ranging from 0.01 to 2.5, a first anode electrical contact, a first cathode electrical contact, arranged above the active zone, and a reflector covering the active zone above an OLED system, and for each point B of the anode contact, the point B being in an edge of the first anodic region, on defining a distance D between B and the point C closest to the point B, and on defining a distance L between the point B and a point X of an opposite edge of the first anodic region from the first edge, and passing through Ci the following criteria are defined: if 0.01≦r
Abstract translation:OLED器件包括薄层电阻R1的透明阳极和薄层电阻R2的阴极,比率r = R2 / R1的范围为0.01至2.5,第一阳极电接触,第一阴极电接触,布置在 活动区域和覆盖OLED系统上方的活动区域的反射器,并且对于阳极触点的每个点B,点B位于第一阳极区域的边缘中,在B和最接近的点C之间限定距离D 到点B,并且在从第一边缘定义点B和第一阳极区域的相对边缘的点X之间的距离L,并且通过Ci,定义以下标准:如果0.01&lt; N1; r <0.1 ,如果为0.5&nlE; r <1,则10%
Abstract:
An OLED electrode includes a transparent or translucent non-conductive substrate, with a refractive index between 1.3 and 1.6. A continuous network of lines of a metal or alloy with electrical conductivity at least 5·106 S·m−1 is on a substrate surface. The metal lines have an average width between 0.05 and 3 μm. These metal lines delimit non-metalized fields of average equivalent diameter between 0.1 and 7.0 μm. At least 20% of the metal lines' surface has a tangent forming an angle between 15 and 75° relative to a substrate-electrode plane. A transparent or translucent layer completely covers the metal lines and non-metalized fields. The layer has refractive index between 1.6 and 2.4 and resistivity greater than that of the metal lines and less than 104 Ω·cm. The metal lines and the transparent or translucent layer form a composite layer called an electrode layer.
Abstract:
A laminated glazing includes a first sheet of a colored glass and a second sheet of a clear glass which are joined together by a lamination interlayer, the first sheet having a thickness el ranging from 1.5 to 2.5 mm, the second sheet having a thickness e2 ranging from 0.4 to 1.9 mm, the ratio R=e2/e12 being at most 0.40 mm−1, the glazing having a light transmission of at least 70% and a direct solar transmission of at most 55%, the colored glass having a chemical composition including a weight content of total iron, expressed in the form Fe2O3, ranging from 1.1 to 2.0%, with a redox ratio, defined as the ratio between the weight content of ferrous iron, expressed in the form FeO, and the weight content of total iron, expressed in the form Fe2O3, ranging from 0.23 to 0.32.