Abstract:
The present invention provides a display device with reduced power consumption and that reduces changes in luminance, and perceptibility of flicker, and a driving method thereof. A display device according to an exemplary embodiment comprises: a display panel configured to display a still image and a motion picture; a signal controller configured to control signals for driving the display panel; and a graphics processing unit configured to transmit input image data to the signal controller, wherein the signal controller comprises a frame memory configured to store the input image data, and the display panel is driven at a first frequency when the motion picture is displayed and the display panel is driven at a second frequency that is lower than the first frequency when the still image is displayed.
Abstract:
A display device includes pixels respectively arranged in areas defined by gate lines and data lines, a gate driver that drives the gate lines in response to a gate pulse signal, a data driver that drives the data lines in response to a clock signal and a data signal, and a timing controller that applies the clock signal and the data signal to the data driver and the gate pulse signal to the gate driver in response to an image signal and a control signal. The timing controller periodically changes a pulse width of each of the gate pulse signal and the clock signal.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixels, a data driver transferring data voltages to a plurality of data lines, and a gate driver transferring gate signals to a plurality of gate lines. The display device also includes a signal controller controlling the data driver and the gate driver and including a signal processor. The signal processor includes a memory and a coupling index calculator calculating a coupling index which represents a coupling degree between adjacent rows. The signal processor compensates for the input image signal to generate a compensated image signal based at least in part on the coupling index.
Abstract:
A display device and a driving method thereof are disclosed. In one aspect, the display device includes a display panel including a plurality of pixels, a data driver transferring data voltages to a plurality of data lines, and a gate driver transferring gate signals to a plurality of gate lines. The display device also includes a signal controller controlling the data driver and the gate driver and including a signal processor. The signal processor includes a memory and a coupling index calculator calculating a coupling index which represents a coupling degree between adjacent rows. The signal processor compensates for the input image signal to generate a compensated image signal based at least in part on the coupling index.
Abstract:
Disclosed are a display device and a driving method thereof. The display device includes: a first lookup table that stores first color compensation data optimized to display a first color; a second lookup table that stores second color compensation data optimized to display a second color different from the first color; and a color compensating unit that refers to the first lookup table and the second lookup table.
Abstract:
A display device includes pixels respectively arranged in areas defined by gate lines and data lines, a gate driver that drives the gate lines in response to a gate pulse signal, a data driver that drives the data lines in response to a clock signal and a data signal, and a timing controller that applies the clock signal and the data signal to the data driver and the gate pulse signal to the gate driver in response to an image signal and a control signal. The timing controller periodically changes a pulse width of each of the gate pulse signal and the clock signal.
Abstract:
An image processing method includes receiving an RGB data, converting the RGB data to an HSV data configured to include hue, saturation, and value compensating for the HSV data on a basis of a hue data of the HSV data, and converting the compensated HSV data to a compensated RGB data. The compensating of the HSV data includes reading out a compensation data corresponding to the hue data from a look-up table and compensating for the HSV data using the compensation data. The data are compensated on the basis of the hue in the HSV color space and the saturation and value are preserved, and thus the image, e.g., the memory color like the skin color, may be prevented from being distorted.