Abstract:
A multilayer electronic component includes: a body including dielectric layers; side margin portions disposed on side surfaces of the body, respectively; and external electrodes disposed on end surfaces of the body, respectively. The body includes a capacitance forming portion including internal electrodes disposed alternately with the dielectric layers and cover portions disposed on upper and lower surfaces of the capacitance forming portion, respectively. Ga2/Ga1 is 0.8 or more and less than 1.0 and Ga2/Gc1 is 0.8 or more and less than 1.0. a1 is a central portion of the capacitance forming portion, a2 is a boundary portion between the capacitance forming portion and the cover portion in the capacitance forming portion, and c1 is a boundary portion between the capacitance forming portion and the cover portion in the cover portion. Ga1, Ga2, and Gc1 are average sizes of dielectric grains at a1, a2, and c1, respectively.
Abstract:
A multilayer electronic component includes: a body including dielectric layers; side margin portions disposed on side surfaces of the body, respectively; and external electrodes disposed on end surfaces of the body, respectively. The body includes a capacitance forming portion including internal electrodes disposed alternately with the dielectric layers and cover portions disposed on upper and lower surfaces of the capacitance forming portion, respectively. Ga2/Ga1 is 0.8 or more and less than 1.0 and Ga2/Gc1 is 0.8 or more and less than 1.0. a1 is a central portion of the capacitance forming portion, a2 is a boundary portion between the capacitance forming portion and the cover portion in the capacitance forming portion, and c1 is a boundary portion between the capacitance forming portion and the cover portion in the cover portion. Ga1, Ga2, and Gc1 are average sizes of dielectric grains at a1, a2, and c1, respectively.
Abstract:
A multilayer electronic component, in which the external electrode may be thinned to secure capacitance per unit volume, while securing the external electrode at a corner in a specific thickness or higher with improved reliability for moisture resistance.
Abstract:
A dielectric composition and a multilayer capacitor including the same are provided. The dielectric composition includes a BaTiO3-base main component, a first subcomponent including an Nb component and a Gd component, a second subcomponent including an Mg component, and a third subcomponent including a Ba component and a Ca component. The first subcomponent is included in an amount of 4 moles or less per 100 moles of the main component. In the first subcomponent, a molar content of Nb and a molar content of Gd satisfy 0.33≤Nb/Gd, and in the third subcomponent, a molar content of Ba and a molar content of Ca satisfy 0.2≤Ca/(Ba+Ca).
Abstract:
A multilayer ceramic electronic component may include: a ceramic body including a plurality of dielectric layers; internal electrodes disposed in the ceramic body and having one ends exposed to outer surfaces of the ceramic body; and external electrodes disposed on the outer surfaces of the ceramic body to be connected to the respective one ends of the internal electrodes and containing a conductive metal and a conductive ceramic powder.
Abstract:
A multilayered ceramic electronic component includes: a ceramic element having a plurality of dielectric layers laminated therein; first inner electrodes formed on the dielectric layers disposed in upper and lower portions in the ceramic element, the width of a portion of each of the first inner electrodes exposed from one end face of the ceramic element being less than that of a portion thereof disposed within the ceramic element; and second inner electrodes formed on the dielectric layers disposed in the middle portion in the ceramic element, the width of a portion of each of the second inner electrodes exposed from one end face of the ceramic element being equal to that of a portion thereof disposed within the ceramic element.
Abstract:
A dielectric composition and a multilayer capacitor including the same are provided. The dielectric composition includes a BaTiO3-base main component, a first subcomponent including an Nb component and a Gd component, a second subcomponent including an Mg component, and a third subcomponent including a Ba component and a Ca component. The first subcomponent is included in an amount of 4 moles or less per 100 moles of the main component. In the first subcomponent, a molar content of Nb and a molar content of Gd satisfy 0.33≤Nb/Gd, and in the third subcomponent, a molar content of Ba and a molar content of Ca satisfy 0.2≤Ca/(Ba+Ca).
Abstract:
There are provided a multilayer ceramic electronic component capable of preventing problems occurring due to a difference in sintering behavior between ceramic layers and internal electrodes and having excellent reliability, and a manufacturing method thereof. The multilayer ceramic electronic component may include a ceramic body including a plurality of ceramic layers; and internal electrodes disposed in the ceramic body. The internal electrodes may contain a conductive ceramic oxide.
Abstract:
A multilayer capacitor includes a body including a multilayer structure in which a plurality of dielectric layers are provided and a plurality of internal electrodes are stacked with the dielectric layer interposed therebetween and external electrodes disposed outside the body and connected to the plurality of internal electrodes. The body includes a high resistance portion disposed in at least one region between the dielectric layer and the internal electrode and inside the dielectric layer and having electric resistance higher than electric resistance of the internal electrode, and the high resistance portion and the plurality of internal electrodes include the same metal component and the same metal oxide component.
Abstract:
A multilayer ceramic electronic component includes: a ceramic body including an active portion having dielectric layers and first and second internal electrodes and first and second cover portions disposed on opposite surfaces of the active portion in a stacking direction, respectively; wherein when a region of the cover portion in contact with the first or second internal electrode is an inner region of the cover portion and a region of the active portion in contact with the inner region of the cover portion is an outer region of the active portion, 1.00