摘要:
A multilayer capacitor includes: a body including dielectric layers and internal electrodes alternately disposed therein; and external electrodes disposed on the body and connected to the internal electrodes. The internal electrodes include a first internal electrode and a second internal electrode. A thickness of the second internal electrode is less than a thickness of the first internal electrode, and an area fraction of ceramics included in the first internal electrode with respect to the first internal electrode is greater than that of ceramics included in the second internal electrode with respect to the second internal electrode.
摘要:
A multilayer capacitor includes: a body including dielectric layers and first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween; and first and second external electrodes disposed on the body to be connected to the first and second internal electrodes, respectively. The dielectric layer contains BaTiO3 as a main ingredient, and includes a plurality of grains and grain boundaries formed between adjacent grains, the grain boundary containing Si in an amount of 8.0 to 18.0 wt % and Al and Mg in a total content of 2.0 to 6.0 wt %.
摘要:
A multilayer ceramic electronic component includes a ceramic body in which dielectric layers and internal electrodes are alternately stacked. The dielectric layers contain at least one dielectric grain having a ratio of a long axis to a short axis that is 3.5 or more. The internal electrodes contain a ceramic component containing a grain growth adjusting ingredient for dielectric grains. Each dielectric layer includes interfacial portions adjacent to the internal electrodes and a central portion disposed between the interfacial portions, and concentrations of the grain growth adjusting ingredient in the interfacial portions and the central portion are different from each other.
摘要:
There is provided a multilayer ceramic capacitor including: a ceramic body including dielectric layers; and a plurality of internal electrodes disposed within the ceramic body, having the dielectric layer interposed therebetween, wherein, on a cross section of the ceramic body in a width-thickness direction thereof, when a distance between an uppermost internal electrode and a lowermost internal electrode measured at centers thereof in a width direction thereof is defined as a and a distance between the uppermost internal electrode and the lowermost internal electrode measured at edges thereof in the width direction thereof is defined as b, 0.953≦a/b≦0.996 is satisfied.
摘要:
There is provided a multilayer ceramic electronic component including a ceramic body including dielectric layers, internal electrodes formed in the ceramic body and including pores, and first and second external electrodes formed on both end portions of the ceramic body, wherein in a cross section of the ceramic body in length and thickness directions, when a thickness of the internal electrode is to and a thickness of the pore is tp, 0.41≦tp/te≦0.86 is satisfied.
摘要:
Disclosed herein is a multilayered ceramic component having a structure in which internal electrode layers and dielectric layers are alternately multilayered, wherein the internal electrode layer includes 0.01 to 12 wt % of common material based on weight of metal powders, and an average particle size of the common material is 30 to 50% of an average particle size of a dielectric base material included in the dielectric layer. According to the first exemplary embodiment of the present invention, the particle size and the added amount of the common material squeezed out from the internal electrode layers at the time of firing thereof at a high temperature are controlled, thereby making it possible to improve the capacity and the reliability of the internal electrode.
摘要:
There is provided a multilayer ceramic electronic component, including a ceramic body, and an internal electrode formed in the ceramic body and having a plurality of non-electrode regions formed therein, wherein in a cross section formed in length and thickness directions of the ceramic body, when a thickness of the internal electrode is Te, an area of the internal electrode is Ae, and an area of the plurality of non-electrode regions is Ao, 0.1 μm≦Te≦0.55 μm and 3.2%≦Ao:Ae≦4.5% are satisfied.
摘要:
A multilayer ceramic electronic component includes: a ceramic body including a recess portion formed in a length direction of at least one main surface thereof so as to be inwardly concave and satisfying T (thickness)/W (width)>1.0; first and second internal electrodes disposed to face each other in the ceramic body; and first and second external electrodes extended from the end surfaces of the ceramic body to the at least one main surface, wherein when the ceramic body is divided into an upper region At, corresponding to 70% to 90% of an overall thickness of the ceramic body, and a lower region Ab, corresponding to 10% to 30% of the overall thickness of the ceramic body, a ratio of an average particle size of Ab materials to an average particle size of At materials is less than 0.5.
摘要:
There are provided a multi-layered ceramic electronic component and a method of manufacturing the same. The multi-layered ceramic electronic component includes: a ceramic body; internal electrodes formed within the ceramic body and including non-electrode regions formed therein; and external electrodes formed on ends of the ceramic body and electrically connected to the internal electrodes, wherein in a cross section of the internal electrode, 70% or more of the non-electrode regions are distributed in a region formed between points inwardly spaced apart from each of the upper and lower boundary surfaces of the internal electrodes by 5%.
摘要:
A dielectric composition includes one of BaTiO3, (Ba,Ca) (Ti,Ca)O3, (Ba,Ca) (Ti,Zr)O3, Ba(Ti,Zr)O3 and (Ba,Ca) (Ti,Sn)O3, as a main component, a first subcomponent including a rare earth element, and a second subcomponent including at least one of a variable valence acceptor element and a fixed valence acceptor element. When a sum of contents of the rare earth element is defined as DT and a sum of contents of the variable valence acceptor element and the fixed valence acceptor element is defined as AT, (DT/AT)/(Ba+Ca) satisfies more than 0.5 and less than 6.0. In addition, a multilayer electronic component including the dielectric composition is provided.