Abstract:
There is provided a nitride semiconductor light emitting device including an active layer having enhanced external quantum efficiency at both low and high current density. The nitride semiconductor light emitting device includes a first conductivity type nitride semiconductor layer; an active layer disposed on the first conductivity type nitride semiconductor layer and having a plurality of quantum well layers and at least one quantum barrier layer alternately arranged; and a second conductivity type nitride semiconductor layer disposed on the active layer. The plurality of quantum well layers disposed adjacent to each other include first and second quantum well layers having different thicknesses.
Abstract:
A method of forming a semiconductor layer is provided. The method includes forming a plurality of nanorods on a substrate and forming a lower semiconductor layer on the substrate so as to expose at least portions of the nanorods. The nanorods are removed so as to form voids in the lower semiconductor layer, and an upper semiconductor layer is formed on an upper portion of the lower semiconductor layer and the voids.
Abstract:
There is provided a chemical vapor deposition apparatus, including: a reaction chamber including a support part having a wafer placed thereon and a gas supply part supplying a process gas to a reactive space formed above the support part to allow a thin film to be grown on a surface of the wafer; a heat exchanger changing a temperature of the process gas, supplied to the reactive space through the gas supply part, to allow the process gas to be maintained at a set temperature: and a controller regulating a flow rate of the process gas, and detecting a temperature difference between a temperature of the process gas and the set temperature to thereby control the heat exchanger to supply the process gas to the reactive space while the process gas is maintained at a reference temperature set according to each stage.
Abstract:
Various embodiments of the present invention relate to an electronic device comprising a wireless communication circuit, and a portable communication device. An electronic device, according to one embodiment, comprises: a housing including a side member that forms the sides of the electronic device; a touchscreen display which is at least partially housed in the housing so as to be visually exposed to the outside; a first conductive portion formed from a first portion of the side member; a second conductive portion formed from a second portion of the side member, opposite to the first portion when viewed from the top of the touch screen display exposed to the outside; and at least one wireless communication circuit electrically connected to a first point within the first portion and a second point within the second portion, wherein the at least one wireless communication circuit can be configured to support transmit diversity by generating a first signal having a first phase of a primary configuration carrier and a second signal having a second phase of the primary configuration carrier, transmitting the first signal through the first conductive portion, and transmitting the second signal through the second conductive portion. Other various embodiments are possible.
Abstract:
There is provided a method of manufacturing a light emitting diode and a light emitting diode manufactured by the same. The method includes growing a first conductivity type nitride semiconductor layer and an undoped nitride semiconductor layer on a substrate sequentially in a first reaction chamber; transferring the substrate having the first conductivity type nitride semiconductor layer and the undoped nitride semiconductor layer grown thereon to a second reaction chamber; growing an additional first conductivity type nitride semiconductor layer on the undoped nitride semiconductor layer in the second reaction chamber; growing an active layer on the additional first conductivity type nitride semiconductor layer; and growing a second conductivity type nitride semiconductor layer on the active layer.