Abstract:
There is provided a tag device including a first sensor, a second sensor, a pre-processor and a neural network processor. The pre-processor generates first position data of the tag device based on time information sensed by at least one of a third sensor included in each of the one or more anchor devices and the first sensor of the tag device, generates second position data based on first speed data of the tag device sensed by the second sensor and the first position data, and generates an image based on a path of movement of the tag device based on the second position data in an operation period, and the neural network processor classifies the image into one of a plurality of movements by using a trained neural network model.
Abstract:
A method and apparatus is provided for selecting power preference information based on network usage information used for a background process of a terminal. The power preference information selection method of the present disclosure includes measuring background network usage of a terminal, acquiring network usage information of the terminal when the background network usage exceeds a predetermined threshold, selecting the power preference information based on the network usage information, and transmitting the power preference information to the base station.
Abstract:
Disclosed is a terminal effectively allocating communication resources to individual processes run by the user. The terminal may update a list of running processes based on information for one or more processes, determining the amount of resources for each process in the list according to priority information of the process related information, and allocating resources to at least one process in the list according to the determined resource amounts. Accordingly, the terminal can adjust throughputs of individual processes to support quality of communication of a process having high priority. This disclosure relates to communication methods and systems that achieve convergence of 5G communication systems supporting even higher data rates after 4G systems and IoT technologies. Based on IoT technologies, this disclosure may be applied to intelligent services, including smart homes, smart buildings, smart cities, smart/connected cars, health-care applications, digital education applications, retail business applications, and security and safety services.
Abstract:
A method and an electronic device for controlling a topology are provided. The method includes forming a star topology by directly connecting the electronic device to at least one node, and transmitting and receiving signals with neighboring nodes including the at least one node and determining whether to form the star topology or an extended star topology with the neighboring nodes based on a result of the transmitting and receiving, wherein the star topology is a topology in which the electronic device is directly connected to the neighboring nodes, and wherein the extended star topology is a topology in which the electronic device is directly connected to the neighboring nodes via an already connected node.