Abstract:
A {111} plane of a substrate having a silicon crystal structure meets a top surface of the substrate to form an interconnection line on the top surface. A first stacked structure and a second stacked structure is formed on the substrate. Each of the first and the second stacked structures includes gate electrodes stacked on the substrate. A transistor is disposed on the substrate and positioned between the first stacked structure and the second stacked structure. The transistor includes a gate electrode extending in a first direction, a source region and a drain region. The source and the drain regions are disposed at both sides of the gate electrode in a second direction crossing the first direction. The interconnection line is extended at an angle with respect to the second direction.
Abstract:
Provided are a three-dimensional semiconductor device and a method of fabricating the same. The three-dimensional semiconductor device may include a mold structure for providing gap regions and an interconnection structure including a plurality of interconnection patterns disposed in the gap regions. The mold structure may include interlayer molds defining upper surfaces and lower surfaces of the interconnection patterns and sidewall molds defining sidewalls of the interconnection patterns below the interlayer molds.