Abstract:
Provided are an anode active material for a lithium secondary battery, and an anode composition and a lithium secondary battery including the anode active material. Silicon secondary particles, in which amorphous silicon primary particles and crystalline silicon primary particles are agglomerated, are used as an anode active material. The structural characteristics and internal pores of the silicon secondary particles act as a buffer for a volumetric change of particles, leading to a decrease in the volumetric expansion of an active material during charging and discharging. Accordingly, pulverization of silicon particles may be prevented, and ultimately, even when a charge and discharge cycle is repeatedly performed, the capacity is maintained, and thus, cycle lifespan characteristics are substantially improved.
Abstract:
A porous silicon composite includes: a porous core including a porous silicon composite secondary particle; and a shell disposed on a surface of the porous core and surrounding the porous core, wherein the porous silicon composite secondary particle includes an aggregate of silicon composite primary particles, each including silicon, a silicon suboxide on a surface of the silicon, and a first graphene on a surface of the silicon suboxide, wherein the shell include a second graphene, and at least one of the first graphene and the second graphene includes at least one element selected from nitrogen, phosphorus, and sulfur.
Abstract:
A porous silicon composite includes: a porous core including a porous silicon composite secondary particle; and a shell disposed on a surface of the porous core and surrounding the porous core, wherein the porous silicon composite secondary particle includes an aggregate of silicon composite primary particles, each including silicon, a silicon suboxide on a surface of the silicon, and a first graphene on a surface of the silicon suboxide, wherein the shell include a second graphene, and at least one of the first graphene and the second graphene includes at least one element selected from nitrogen, phosphorus, and sulfur.
Abstract:
The present invention relates to a production method for a negative electrode active material for a lithium secondary battery, and to a lithium secondary battery, and provides a production method for a lithium secondary battery negative electrode active material that is produced by mechanically grinding or crushing, in dry or wet conditions, particulate silicon, which is in a secondary particle state formed by agglomerating crystalline and amorphous silicon primary particles.
Abstract:
A porous silicon composite includes: a porous core including a porous silicon composite secondary particle; and a shell disposed on a surface of the porous core and surrounding the porous core, wherein the porous silicon composite secondary particle includes an aggregate of silicon composite primary particles, each including silicon, a silicon suboxide on a surface of the silicon, and a first graphene on a surface of the silicon suboxide, wherein the shell include a second graphene, and at least one of the first graphene and the second graphene includes at least one element selected from nitrogen, phosphorus, and sulfur.
Abstract:
A porous silicon composite includes: a porous core including a porous silicon composite secondary particle; and a shell disposed on a surface of the porous core and surrounding the porous core, wherein the porous silicon composite secondary particle includes an aggregate of silicon composite primary particles, each including silicon, a silicon suboxide on a surface of the silicon, and a first graphene on a surface of the silicon suboxide, wherein the shell include a second graphene, and at least one of the first graphene and the second graphene includes at least one element selected from nitrogen, phosphorus, and sulfur.
Abstract:
The present invention relates to a negative electrode material for a lithium secondary battery, a method for producing same, and a lithium secondary battery comprising same as a negative electrode. The present invention provides a negative electrode material for a lithium secondary battery, the material comprising a complex in which a chemical vapor deposition (CVD) carbon coating film is formed on an amorphous carbon material comprising a silicon material that has been surface treated by a silane coupling agent.