Abstract:
An ultrasound diagnostic apparatus includes a touch interface configured to display a screen comprising an ultrasound image of an object, and receive a user touch on the ultrasound image; and a controller configured to acquire a seed point, at which the user touch is sensed, acquire shape information of the object, and perform a control to display, on the ultrasound image, a touch point corresponding to the user touch, the touch point being determined based on the seed point and the shape information.
Abstract:
A medical image processing apparatus includes an image processor configured to detect an anatomical organ from a three-dimensional (3D) brain image and determine a plane-of-interest (POI) from the 3D brain image, based on the detected anatomical organ, and an output unit configured to output an image of the POI.
Abstract:
An ultrasound diagnostic apparatus includes a touch interface configured to display a screen comprising an ultrasound image of an object, and receive a user touch on the ultrasound image; and a controller configured to acquire a seed point, at which the user touch is sensed, acquire shape information of the object, and perform a control to display, on the ultrasound image, a touch point corresponding to the user touch, the touch point being determined based on the seed point and the shape information.
Abstract:
Provided is an ultrasound apparatus including a first display configured to display an ultrasound image; a control panel including a second display that is different from the first display and configured to display a plurality of control items related to the ultrasound image; and a controller configured to select at least one control item from among the plurality of control items based on a location of an input tool located on the second display, and to control the first display to display the selected at least one control item and an indicator representing the location of the input tool together with the ultrasound image.
Abstract:
A Computer-Aided Diagnosis (CAD) apparatus for correctly detecting a nodule is provided. The CAD apparatus includes an input device for receiving a first image captured by emitting X-rays towards a user and a second image that is discriminated from the first image and is an image of the user; an information acquisition device for acquiring a bone model of the user by using the second image; and a CAD device for compensating for the first image by using the bone model.
Abstract:
A method of synthesizing medical images includes acquiring image data of an object; generating first medical image frames of the object based on the image data; selecting, from among the first medical image frames, second medical image frames corresponding to points of time that have the same electrocardiogram (ECG) signal information of the object; generating a panoramic image by synthesizing the second medical image frames; and displaying the panoramic image on a display.
Abstract:
An ultrasound medical imaging method includes: displaying an ultrasound image on a screen; determining a view plane, on which the displayed ultrasound image is captured, among view planes; and setting a region of interest corresponding to the determined view plane on the ultrasound image.
Abstract:
A method for medical imaging executed by an apparatus including a processor includes determining a start block of volume rendering based on respective maximum values of blocks positioned on a path of a light beam; acquiring a value of the light beam based on first sampling values acquired by sampling the start block; setting a processing order for remaining blocks positioned on the path of the light beam based on respective distances between the start block and the remaining blocks; determining whether a next block, according to the processing order, is to be processed, by comparing a maximum value of the next block with the value of the light beam; and comparing second sampling values acquired by sampling the next block with the value of the light beam and updating the value of the light beam according to a comparison result, in response to the maximum value of the next block being greater than the value of the light beam.