Abstract:
Methods and systems for managing a Multipath Transmission Control Protocol (MPTCP) in an electronic device during data transport between the electronic device (client device) and other electronic device (host device) are described. The method includes monitoring one or more factors associated with the MPTCP implemented in the client device. Further, based on the one or more factors that are monitored, the method includes determining whether to enable the MPTCP in the electronic device for a current data transport. Thereafter, the method includes determining a mode, among a plurality of modes provided for the MPTCP, to control a plurality of subflows of the MPTCP when the MPTCP is enabled for the current data transport. The method further includes dynamically switching the mode of the MPTCP during the current data transport based on the one or more factors being monitored during the current data transport.
Abstract:
Embodiments herein provide a method for managing multiple bandwidth boost solutions co-existing in an electronic device. The method includes identifying an ongoing data session associated with at least one of a first bandwidth boost solution and a second bandwidth boost solution. The method includes dynamically selecting at least one bandwidth boost solution based on at least one parameter. The method includes managing multiple bandwidth boost solutions, wherein the bandwidth boost solution can be either network dependent or independent bandwidth boost solution. The method includes determining that the identified event corresponds to a particular bandwidth boost solution or a combination of bandwidth boost solutions. The method includes dynamically selecting another bandwidth boost solution or a combination of bandwidth boost solutions upon determining that the identified event corresponds to a particular bandwidth boost solution or a combination of bandwidth boost solutions.
Abstract:
A method and apparatus for transmitting and receiving data in a wireless communication system are provided, and an operation method of a terminal for transmitting and receiving data in a wireless communication system includes: identifying at least one missing data packet from among a plurality of data packets transmitted from an external device; identifying an event corresponding to the at least one missing data packet; and setting a time period for receiving the at least one missing data packet, based on a network metric data corresponding to the identified event.
Abstract:
Embodiments herein provide a method for managing multiple bandwidth boost solutions co-existing in an electronic device. The method includes identifying an ongoing data session associated with at least one of a first bandwidth boost solution and a second bandwidth boost solution. The method includes dynamically selecting at least one bandwidth boost solution based on at least one parameter. The method includes managing multiple bandwidth boost solutions, wherein the bandwidth boost solution can be either network dependent or independent bandwidth boost solution. The method includes determining that the identified event corresponds to a particular bandwidth boost solution or a combination of bandwidth boost solutions. The method includes dynamically selecting another bandwidth boost solution or a combination of bandwidth boost solutions upon determining that the identified event corresponds to a particular bandwidth boost solution or a combination of bandwidth boost solutions.
Abstract:
Methods and systems for managing a Multipath Transmission Control Protocol (MPTCP) in an electronic device during data transport between the electronic device (client device) and other electronic device (host device) are described. The method includes monitoring one or more factors associated with the MPTCP implemented in the client device. Further, based on the one or more factors that are monitored, the method includes determining whether to enable the MPTCP in the electronic device for a current data transport. Thereafter, the method includes determining a mode, among a plurality of modes provided for the MPTCP, to control a plurality of subflows of the MPTCP when the MPTCP is enabled for the current data transport. The method further includes dynamically switching the mode of the MPTCP during the current data transport based on the one or more factors being monitored during the current data transport.