Abstract:
The invention allows determining a local change of an admixture concentration in a fluid flow at an entrance to a measurement cell. The change of the admixture concentration in time inside the measurement cell is first determined for a fluid containing the admixture, the change of concentration of which in time at the entrance to the measurement cell is known. Then, an impulse response of the cell is found applying the deconvolution method. The change of the admixture concentration inside the measurement cell is then determined for a fluid being studied with an unknown concentration of the admixture at the entrance. The unknown concentration is determined using the impulse response of the measurement cell and the change of the admixture concentration inside the cell.
Abstract:
A sample of porous material is placed in a calorimeter cell and a pressure in the cell is increased starting from a pressure value of a first step by filling the cell with a wetting fluid. Measurements are taken of a heat flow to the cell and a fluid volume at each step. Then, the pressure in the cell is decreased to the pressure value of a first step with continued measurements of the heat flow to the cell. Increase and following decrease of the fluid pressure in the cell are repeated at least once. Then a temperature in the cell is decreased below a wetting fluid crystallization point. Once the fluid has been fully crystallized in sample pores, the temperature in the cell is increased above a wetting fluid melting point. Wetting limiting angle of the pores filled with fluid, and pore sizes are determined based on the results of heat flow measurements with due consideration of heat effect of fluid compression.
Abstract:
A sample of porous material is placed in a calorimeter cell and a pressure in the cell is increased starting from a pressure value of a first step by filling the cell with a wetting fluid. Measurements are taken of a heat flow to the cell and a fluid volume at each step. Then, the pressure in the cell is decreased to the pressure value of a first step with continued measurements of the heat flow to the cell. Increase and following decrease of the fluid pressure in the cell are repeated at least once. Then a temperature in the cell is decreased below a wetting fluid crystallization point. Once the fluid has been fully crystallized in sample pores, the temperature in the cell is increased above a wetting fluid melting point. Wetting limiting angle of the pores filled with fluid, and pore sizes are determined based on the results of heat flow measurements with due consideration of heat effect of fluid compression.
Abstract:
A gas phase and a liquid phase with a specified volumetric ratio of phases in a flow and with specified flow rates are injected into a multiphase separator. During the injection gas and liquid phase volumes in the separator are determined and accumulation rates of each phase in the separator are calculated. A thermodynamic equilibrium is estimated based on a discrepancy between the phase injection rates and the calculated phase accumulation rates.
Abstract:
An initial 3D microstructural image of at least a part of a sample consisting of at least one mineral is obtained. Then, a mineral distribution image of at least one part of the sample is obtained so that each obtained mineral distribution image at least partially overlaps with the obtained initial 3D microstructural image and spatial registration with the obtained initial 3D microstructural image is provided in overlapping regions. Then at least one local feature in each point of the obtained initial 3D microstructural image is extracted by a computing system. A correspondence is found between the extracted local features in each point of the overlapping regions in the obtained initial 3D microstructural image and the minerals in the corresponding points in the overlapping regions in the obtained mineral distribution images. The extracted local features in each point of the obtained initial 3D microstructural image and the found correspondence are used for segmenting the obtained initial 3D microstructural image. A 3D mineral model of the sample is created from the segmented initial 3D microstructural image.
Abstract:
A gas phase and a liquid phase with a specified volumetric ratio of phases in a flow and with specified flow rates are injected into a multiphase separator. During the injection gas and liquid phase volumes in the separator are determined and accumulation rates of each phase in the separator are calculated. A thermodynamic equilibrium is estimated based on a discrepancy between the phase injection rates and the calculated phase accumulation rates.