Abstract:
A method for performing a simulation of a field having a subterranean formation is described. The method includes obtaining phase behavior data of subterranean fluids of the field, generating an equation of state (EOS) model of the fluids based on the phase behavior data, generating a Helmholtz free energy model that reproduces predictions of the EOS model over a pre-determined pressure and temperature range, and performing the simulation of the field using the Helmholtz free energy model. The method may further include reducing the EOS model to a reduced EOS model having a reduced number of components to represent the EOS model over a pre-determined pressure and temperature range, generating the Helmholtz free energy model based on the reduced EOS model, and obtaining and using phase behavior data of injection fluids used. A computer system data.
Abstract:
The disclosure relates to methods of logging wells for gas capped oil reservoirs with a known mineral composition of constituent rocks. For determining characteristics of a gas-oil transition zone at least one sample of a reservoir fluid from a gas part and from an oil part of the reservoir are taken. Reservoir temperature and pressure are measured in places where the samples of the reservoir fluid are taken and densities and compositions of the samples are determined. The determined densities and compositions and the measured pressure and temperature are used to configure an equation of state of hydrocarbon mixtures. Porosity, water saturation and a total hydrogen content of a saturated rock are measured along the wellbore. A volume of hydrocarbon phases is computed from the measured values of porosity and water saturation of the saturated rock, and a hydrogen content of the hydrocarbon phases is determined from the measured values of the total hydrogen content of the saturated rock. Using the equation of state of hydrocarbon mixtures density and composition of the hydrocarbon phases along the wellbore are computed. A specific hydrogen content in gas and oil along the wellbore is determined from the computed values of density and composition of the hydrocarbon phases along the wellbore. Gas and oil saturation distribution along the wellbore is determined from the determined specific hydrogen content, determined hydrogen content of the hydrocarbon phases and the measured porosity.
Abstract:
The method for determining equilibrium wettability of an interface between a void space and a solid phase of a rock sample comprises obtaining a three-dimensional image of the internal structure of the sample. On the obtained image of the internal structure of the sample, a void space and a solid phase are differentiated. An interface between the void space and the solid phase of the sample and distribution of minerals on this surface are determined. Wettability of the solid phase at each point of the interface between the void space and the solid phase of the rock sample is determined. A process of oil migration to the void space filled with stratum water at the initial stage of formation of an oil and gas field is numerically simulated, and finally, the equilibrium wettability of the interface between the void space and the solid phase of the rock sample is determined.
Abstract:
The method for determining equilibrium wettability of an interface between a void space and a solid phase of a rock sample comprises obtaining a three-dimensional image of the internal structure of the sample. On the obtained image of the internal structure of the sample, a void space and a solid phase are differentiated. An interface between the void space and the solid phase of the sample and distribution of minerals on this surface are determined. Wettability of the solid phase at each point of the interface between the void space and the solid phase of the rock sample is determined. A process of oil migration to the void space filled with stratum water at the initial stage of formation of an oil and gas field is numerically simulated, and finally, the equilibrium wettability of the interface between the void space and the solid phase of the rock sample is determined.
Abstract:
Methods and systems for evaluating hydrocarbon in heterogeneous formations are disclosed. The use of three-dimensional simulation of the heterogeneous and porous structure at the nanometer scale of formation facilitates more accurate evaluation of the hydrocarbon reserve and fluid behavior.
Abstract:
Methods and systems for evaluating hydrocarbon in heterogeneous formations are disclosed. The use of three-dimensional simulation of the heterogeneous and porous structure at the nanometer scale of formation facilitates more accurate evaluation of the hydrocarbon reserve and fluid behavior.
Abstract:
Performing an enhanced oil recovery (EOR) injection operation in an oilfield having a reservoir may include obtaining a EOR scenarios that each include a chemical agent, obtaining a three-dimensional (3D) porous solid image of a core sample, and generating a 3D pore scale model from the 3D porous solid image. The core sample is a 3D porous medium representing a portion of the oilfield. The 3D pore scale model describes a physical pore structure in the 3D porous medium. Simulations are performed using the EOR scenarios to obtain simulation results by, for each EOR scenario, simulating, on the first 3D pore scale model, the EOR injection operation using the chemical agent specified by the EOR scenario to generate a simulation result. A comparative analysis of the simulation results is performed to obtain a selected chemical agent. Further, an operation is performed using the selected chemical agent.
Abstract:
A set of reservoir production results are obtained by simulation of hydrocarbons flow in a heterogeneous reservoir based on the values of heterogeneity blocks transport matrices. The transport matrices of the heterogeneity blocks are calculated from a reservoir block hierarchy. The simulation is initiated by a set of foundation blocks transport matrices calculated by evaluating a fluid transport law in the blocks being in the lowest rank of the hierarchy.
Abstract:
In order to determine characteristics of a gas-oil transition zone in a gas capped oil reservoir, samples of a reservoir fluid from a gas and an oil part of the reservoir are taken. To configure an equation of state of hydrocarbon mixtures, reservoir temperature and pressure are measured in places where the samples of the reservoir fluid are taken and densities and compositions of the samples are determined. Porosity, water saturation and total hydrogen content of a saturated rock are measured along the wellbore and a volume and a hydrogen content of hydrocarbon phases are determined. Using the equation of state, density and composition of the hydrocarbon phases are computed and a specific hydrogen content in gas and oil along the wellbore is determined. Gas and oil saturation distribution along the wellbore is determined from the determined specific hydrogen content, determined hydrogen content of the hydrocarbon phases and the measured porosity.
Abstract:
A method for performing a simulation of a field having a subterranean formation is described. The method includes obtaining phase behavior data of subterranean fluids of the field, generating an equation of state (EOS) model of the fluids based on the phase behavior data, generating a Helmholtz free energy model that reproduces predictions of the EOS model over a pre-determined pressure and temperature range, and performing the simulation of the field using the Helmholtz free energy model. The method may further include reducing the EOS model to a reduced EOS model having a reduced number of components to represent the EOS model over a pre-determined pressure and temperature range, generating the Helmholtz free energy model based on the reduced EOS model, and obtaining and using phase behavior data of injection fluids used. A computer system data.