Abstract:
The present disclosure describes spill retention mechanisms for cooktops and other substrates. The spill retention mechanisms can hinder the movement of liquids primarily due to the physical attributes of the mechanisms, unlike hydrophobic mechanisms which hinder movement primarily due to the chemical attributes of the hydrophobic material.
Abstract:
Disclosed are articles that are provided with a haptically-perceptible surface. The articles include a coated glass or glass ceramic substrate which is provided with a layer with haptic properties so that the layer has a haptically perceptible texture. The layer includes texturing inorganic and/or polysiloxane-based particles which are fixed on the substrate by a layer-forming material. The particles cause protrusions on the layer and so produce the haptically perceptible texture.
Abstract:
Glass or glass ceramic substrates are provided that have a decorative coating. Methods for coating a glass or glass ceramic substrate with a decorative coating are also provided. In the method, a first, textured layer is applied which is filled with a further layer, so that a layer material of graded composition is formed.
Abstract:
A coated glass or glass ceramic substrate with a local-area and/or full-area layer having haptic properties is provided. The layer has a haptically perceptible texture and includes texturing inorganic and/or polysiloxane-based particles that are fixed on the substrate by a layer-forming material. The particles cause protrusions on the layer and so produce the haptically perceptible texture. The substrate is also provided, at least partially, with at least one additional layer.
Abstract:
A method for producing a sol-gel ink, in particular from TEOS and MTEOS, is provided. The method includes adding inorganic particles as a filler and adding a high-boiling solvent.
Abstract:
Disclosed are articles that are provided with a haptically-perceptible surface. The articles include a coated glass or glass ceramic substrate which is provided with a layer with haptic properties so that the layer has a haptically perceptible texture. The layer includes texturing inorganic and/or polysiloxane-based particles which are fixed on the substrate by a layer-forming material. The particles cause protrusions on the layer and so produce the haptically perceptible texture.
Abstract:
Glass or glass ceramic substrates are provided that have a decorative coating. Methods for coating a glass or glass ceramic substrate with a decorative coating are also provided. In the method, a first, textured layer is applied which is filled with a further layer, so that a layer material of graded composition is formed.
Abstract:
A coated glass or glass ceramic substrate with a local-area and/or full-area layer having haptic properties is provided. The layer has a haptically perceptible texture and includes texturing inorganic and/or polysiloxane-based particles that are fixed on the substrate by a layer-forming material. The particles cause protrusions on the layer and so produce the haptically perceptible texture. The substrate is also provided, at least partially, with at least one additional layer.
Abstract:
Glass or glass ceramic substrates are provided that have a decorative coating. Methods for coating a glass or glass ceramic substrate with a decorative coating are also provided. In the method, a first, textured layer is applied which is filled with a further layer, so that a layer material of graded composition is formed.
Abstract:
Glass or glass ceramic substrates are provided that have a decorative coating. Methods for coating a glass or glass ceramic substrate with a decorative coating are also provided. In the method, a first, textured layer is applied which is filled with a further layer, so that a layer material of graded composition is formed.