Abstract:
Provided is a liquid ejecting head that ejects a liquid in a pressure chamber by a piezoelectric device, the piezoelectric device including a vibration plate, a piezoelectric layer containing lead, a first electrode provided between the vibration plate and the piezoelectric layer, and a second electrode provided on a side opposite to a side of the first electrode as viewed from the piezoelectric layer. The piezoelectric layer is preferentially oriented in a (100) plane, a lattice constant c defined by a crystal plane of the piezoelectric layer parallel to a film surface of the piezoelectric layer and a lattice constant a defined by a crystal plane perpendicular to the film surface satisfy 0.9945≤c/a≤1.012, and the thickness of the piezoelectric device is twice or more the thickness t (t
Abstract:
A piezoelectric device includes a piezoelectric element including a first electrode, a second electrode, and a piezoelectric layer provided between the first electrode and the second electrode, and a driving system that drives the piezoelectric element by applying voltage to the first electrode and the second electrode, in which the driving system drives the piezoelectric element at a maximum voltage that is lower than a voltage at which a tunnel current or a Poole-Frenkel current starts to be generated in the piezoelectric element.
Abstract:
An electronic device includes a capacitor that is configured with a first electrode layer, an insulating layer, and a second electrode layer being formed in the order listed herein. At least one end of the capacitor is defined by an end of the second electrode layer. The insulating layer is provided so as to extend to a non-element region that is on the outside of one end of the capacitor. The insulating layer under the non-element region is formed thinner than the insulating layer under the capacitor. A difference between the thickness of the insulating layer under the non-element region and the thickness of the insulating layer under the capacitor is equal to or less than 50 nm.
Abstract:
An electronic device includes a capacitor that is configured with a first electrode layer, an insulating layer, and a second electrode layer being formed in the order listed herein. At least one end of the capacitor is defined by an end of the second electrode layer. The insulating layer is provided so as to extend to a non-element region that is on the outside of one end of the capacitor. The insulating layer under the non-element region is formed thinner than the insulating layer under the capacitor. A difference between the thickness of the insulating layer under the non-element region and the thickness of the insulating layer under the capacitor is equal to or less than 50 nm.
Abstract:
A liquid ejecting head includes a piezoelectric element including a first electrode, a piezoelectric layer overlying the first electrode with an orientation control layer therebetween, and a second electrode overlying the piezoelectric layer. The piezoelectric layer is made of a complex oxide having a perovskite structure including an A site containing lead and a B site containing zirconium and titanium. The orientation control layer is made of a complex oxide having a perovskite structure including an A site containing lanthanum and a B site containing nickel and titanium.
Abstract:
An electronic device includes a capacitor that is configured with a first electrode layer, an insulating layer, and a second electrode layer being formed in the order listed herein. At least one end of the capacitor is defined by an end of the second electrode layer. The insulating layer is provided so as to extend to a non-element region that is on the outside of one end of the capacitor. The insulating layer under the non-element region is formed thinner than the insulating layer under the capacitor. A difference between the thickness of the insulating layer under the non-element region and the thickness of the insulating layer under the capacitor is equal to or less than 50 nm.
Abstract:
An electronic device includes a capacitor that is configured with a first electrode layer, an insulating layer, and a second electrode layer being formed in the order listed herein. At least one end of the capacitor is defined by an end of the second electrode layer. The insulating layer is provided so as to extend to a non-element region that is on the outside of one end of the capacitor. The insulating layer under the non-element region is formed thinner than the insulating layer under the capacitor. A difference between the thickness of the insulating layer under the non-element region and the thickness of the insulating layer under the capacitor is equal to or less than 50 nm.