Abstract:
An imager may include an array of pixels formed on a substrate. A chemisorption layer such as a planar chemisorption layer may be deposited over the array of pixels. The chemisorption layer may include active sites that bond with anchoring molecules. The anchoring molecules may be bonded to the planar chemisorption layer in only localized regions each covering a respective pixel of the array of pixels. The image sensor may include a photoresist layer that covers the chemisorption layer. Openings in the photoresist layer may define the boundaries of the localized regions. The anchoring molecules may be bonded only with the chemisorption layer without bonding to the photoresist layer. The anchoring molecules may serve to bond with analyte molecules. By forming the anchoring molecules within only localized regions centered over respective pixels, spatial resolution of the imager when imaging the analyte molecules may be improved.
Abstract:
An imaging system may include one or more optical filters that include metallic nanoparticles in a matrix. The metallic nanoparticle optical filters may form a color filter array for an imager in the imaging system. Different metallic nanoparticle optical filters may be formed for each desired color. Properties of the metallic nanoparticles and matrices may be varied to achieve the desired optical filtering properties and pass the desired wavelength bands to the imager. As examples, the type of metal, the size of the nanoparticles, the shape of the nanoparticles, and the type of matrix in which the nanoparticles are formed may all influence the optical properties of the resulting metallic nanoparticle optical film.
Abstract:
An image sensor integrated circuit may contain image sensor pixels. A channel for receiving a fluid with particles such as fluorescent biological samples may be formed on top of the image sensor. Light-control layers may be interposed between the fluid channel and the top of the image sensor. The light-control layers may include a color filter array, a microlens array over the color filter array, and a plasmonic color filter. The plasmonic color filter may be formed from a patterned metal layer on the color filter array or on the microlens array. The patterned metal layer may include openings that are configured to use plasmonic effects to control the colors of light that pass through the plasmonic color filter. The color filter array and the plasmonic color filter, in combination, may block light from a light source in the system while passing fluorescent light from the sample.
Abstract:
An image sensor package may include a semiconductor wafer having a pixel array, a color filter array (CFA) formed over the pixel array, and one or more lenses formed over the CFA. A light block layer may couple over the semiconductor wafer around a perimeter of the lenses and an encapsulation layer may be coupled around the perimeter of the lenses and over the light block layer. The light block layer may form an opening providing access to the lenses. A mold compound layer may be coupled over the encapsulation layer and the light block layer. A temporary protection layer may be used to protect the one or more lenses from contamination during application of the mold compound and/or during processes occurring outside of a cleanroom environment.
Abstract:
An imaging system may include one or more optical filters that include metallic nanoparticles in a matrix. The metallic nanoparticle optical filters may form a color filter array for an imager in the imaging system. Different metallic nanoparticle optical filters may be formed for each desired color. Properties of the metallic nanoparticles and matrices may be varied to achieve the desired optical filtering properties and pass the desired wavelength bands to the imager. As examples, the type of metal, the size of the nanoparticles, the shape of the nanoparticles, and the type of matrix in which the nanoparticles are formed may all influence the optical properties of the resulting metallic nanoparticle optical film.
Abstract:
An image sensor package may include a semiconductor wafer having a pixel array, a color filter array (CFA) formed over the pixel array, and one or more lenses formed over the CFA. A light block layer may couple over the semiconductor wafer around a perimeter of the lenses and an encapsulation layer may be coupled around the perimeter of the lenses and over the light block layer. The light block layer may form an opening providing access to the lenses. A mold compound layer may be coupled over the encapsulation layer and the light block layer. A temporary protection layer may be used to protect the one or more lenses from contamination during application of the mold compound and/or during processes occurring outside of a cleanroom environment.
Abstract:
An image sensor package may include a semiconductor wafer having a pixel array, a color filter array (CFA) formed over the pixel array, and one or more lenses formed over the CFA. A light block layer may couple over the semiconductor wafer around a perimeter of the lenses and an encapsulation layer may be coupled around the perimeter of the lenses and over the light block layer. The light block layer may form an opening providing access to the lenses. A mold compound layer may be coupled over the encapsulation layer and the light block layer. A temporary protection layer may be used to protect the one or more lenses from contamination during application of the mold compound and/or during processes occurring outside of a cleanroom environment.
Abstract:
An imaging system may include an image sensor having an array of image pixels. Some image pixels in the array may be provided with spectral response adjustment structures. For example, a plurality of broadband pixels in the array may include spectral response adjustment structures. The spectral response adjustment structures may be configured to narrow the spectral response of the broadband pixels in high light conditions. For example, the spectral response of the broadband pixels may transition from clear to gray, from clear to green, or from yellow to green as the light level increases. The spectral response adjustment structures may, for example, be formed from photochromic materials or electrochromic elements. Processing circuitry in the imaging system may generate a color correction matrix for an image based at least partly on the state of the spectral response adjustment structures.