Abstract:
An organic semiconductor device with low driving voltage is provided. The light-emitting device includes an anode, a cathode, and an EL layer between the anode and the cathode. The EL layer includes a hole-transport layer and alight-emitting layer. The hole-transport layer is positioned between the anode and the light-emitting layer. The hole-transport layer is not in contact with the anode. The hole-transport layer includes a transport layer material for a light-emitting device and the GSP_slope that is a potential gradient of a surface potential of an evaporated film of the material is higher than or equal to 20 (mV/nm).
Abstract:
To provide a novel arylamine compound with a low refractive index. The provided arylamine compound includes at least one aromatic group. The aromatic group includes a first benzene ring, a second benzene ring, a third benzene ring, and at least three alkyl groups. The first benzene ring, the second benzene ring, and the third benzene ring are directly bonded in this order. The first benzene ring is bonded to nitrogen of amine. The first benzene ring may further include a substituted or unsubstituted phenyl group. The second benzene ring or the third benzene ring may further include an alkylated phenyl group. Each of first positions and third positions of two or more of the first to third benzene rings is independently bonded to another benzene ring, a benzene ring of the alkylated phenyl group, any of the at least three alkyl groups, or the nitrogen of the amine.
Abstract:
Provided is a novel heterocyclic compound which can be used for a light-emitting element, as a host material of a light-emitting layer in which a light-emitting substance is dispersed. A heterocyclic compound represented by a general formula (G1) is provided. In the formula, A represents any of a substituted or unsubstituted dibenzothiophenyl group, a substituted or unsubstituted dibenzofuranyl group, and a substituted or unsubstituted carbazolyl group, R11 to R19 separately represent any of hydrogen, an alkyl group having 1 to 4 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 13 carbon atoms, and Ar represents a substituted or unsubstituted arylene group having 6 to 13 carbon atoms.
Abstract:
Provided is a novel heterocyclic compound, a novel heterocyclic compound that can be used in a light-emitting element, or a highly reliable light-emitting device, electronic device, and lighting device in each of which the light-emitting element using the novel heterocyclic compound is used. One embodiment of the present invention is a heterocyclic compound represented by General Formula (G1). In General Formula (G1), each of A1 and A2 independently represents nitrogen or carbon bonded to hydrogen, and at least one of A1 and A2 represents nitrogen; Ar represents a substituted or unsubstituted arylene group having 6 to 18 carbon atoms; B represents a substituted or unsubstituted fluorenyl group; and R1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 13 carbon atoms.
Abstract:
To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV.
Abstract:
A novel sublimation purification method is provided. Moreover, a novel sublimation purification apparatus is provided. A purification method using a purification apparatus including a purification portion where a substance is purified by vaporization, a temperature adjustment means, a gas supply means, and a gas discharge means is provided. In the purification method, the inside of the purification portion is made to have a first pressure with use of the gas discharge means, a temperature gradient is generated in the purification portion with use of the temperature adjustment means such that the substance is purified, the pressure in the purification portion is then set at a second pressure with use of the gas supply means, and the purification portion is cooled with use of the temperature adjustment means. The second pressure is higher than the first pressure and the second pressure is higher than or equal to an atmospheric pressure.
Abstract:
Provided is a novel heterocyclic compound, a novel heterocyclic compound that can be used in a light-emitting element, or a highly reliable light-emitting device, electronic device, and lighting device in each of which the light-emitting element using the novel heterocyclic compound is used. One embodiment of the present invention is a heterocyclic compound represented by General Formula (G1). In General Formula (G1), each of A1 and A2 independently represents nitrogen or carbon bonded to hydrogen, and at least one of A1 and A2 represents nitrogen; Ar represents a substituted or unsubstituted arylene group having 6 to 18 carbon atoms; B represents a substituted or unsubstituted fluorenyl group; and R1 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 13 carbon atoms.
Abstract:
To provide a light-emitting element with an improved reliability, a light-emitting element with a high current efficiency (or a high quantum efficiency), and a novel dibenzo[f,h]quinoxaline derivative that is favorably used in a light-emitting element which is one embodiment of the present invention. A light-emitting element includes an EL layer between an anode and a cathode. The EL layer includes a light-emitting layer; the light-emitting layer contains a first organic compound having an electron-transport property and a hole-transport property, a second organic compound having a hole-transport property, and a light-emitting substance; the combination of the first organic compound and the second organic compound forms an exciplex; the HOMO level of the first organic compound is lower than the HOMO level of the second organic compound; and a difference between the HOMO level of the first organic compound and the HOMO level of the second organic compound is less than or equal to 0.4 eV.
Abstract:
A novel heterocyclic compound is provided. A novel heterocyclic compound that can be used for a light-emitting element is provided. A novel heterocyclic compound that can improve the reliability of a light-emitting element when used for a light-emitting element is provided. A light-emitting element, a light-emitting device, an electronic appliance, or a lighting device which includes the novel heterocyclic compound and is highly reliable is provided. One embodiment of the present invention is a heterocyclic compound represented by a general formula (G0). In the general formula (G0), A represents a dibenzo[f,h]quinoxalinyl group, B represents a substituted or unsubstituted fluorenyl group, and Ar represents a substituted or unsubstituted arylene group having 6 to 25 carbon atoms. A—Ar—B (G0)
Abstract:
A dibenzo[f,h]quinoxaline derivative in which impurities are reduced and a novel method of synthesizing the dibenzo[f,h]quinoxaline derivative in which impurities are reduced are provided. In addition, a light-emitting element, a light-emitting device, an electronic appliance, or a lighting device with high emission efficiency and high reliability in which the dibenzo[f,h]quinoxaline derivative is used as an EL material is provided. In the synthesis method, a 2-(chloroaryl)dibenzo[f,h]quinoxaline derivative is used as a synthetic intermediate in a synthetic pathway so that an impurity contained in a final product can be removed easily by purification by sublimation.