Abstract:
A production method for a composite of fine particles (A) and carbon particles (B), including the steps of: mixing fine particles (A) formed of a substance comprising at least one kind of Si, Sn, Al, Ge and In; and molten pitch, to obtain a mixture (1); pulverizing the mixture (1) to obtain a pulverized product (2a); dry-mixing the pulverized product (2a) and carbon particles (B) to obtain a mixture (3a); and firing the mixture (3a), followed by pulverization; or including the steps of: adding carbon particles (B) to the mixture (1), followed by dry mixing and pulverizing, to obtain a pulverized product (2b); and firing the pulverized product (2b), followed by pulverization.
Abstract:
The invention relates to an anode for lithium secondary battery comprising vapor grown carbon fiber uniformly dispersed without forming an agglomerate of 10 μm or larger in an anode active material using natural graphite or artificial graphite, which anode is excellent in long cycle life and large current characteristics. Composition used for production for the anode can be produced, for example, by mixing a thickening agent solution containing an anode active material, a thickening agent aqueous solution and styrene butadiene rubber as binder with a composition containing carbon fiber dispersed in a thickening agent with a predetermined viscosity or by mixing an anode active material with vapor grown carbon fiber in dry state and then adding polyvinylidene difluoride thereto.
Abstract:
The invention relates to a carbon material for forming a battery electrode, comprising carbon powder having a homogeneous structure which is produced by causing an organic compound, serving as a raw material of a polymer, to deposit onto and/or permeate into carbonaceous particles, and subsequently polymerizing the organic compound, followed by thermal treatment at a temperature of 1,800 to 3,300° C., which comprises a structure which is substantially uniform throughout the entirety of the particle from the surface to the central core where a graphite crystal structure region and an amorphous structure region are distributed. By using the material, a battery having high discharging capacity and low irreversible capacity, with excellent coulombic efficiency and excellent cycle characteristics can be fabricated.
Abstract:
Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 μm or less, or the silicon-based domains are not at all agglomerated into agglomerates.
Abstract:
A negative electrode material for a lithium ion battery, in which a fine particle (A) containing an element selected from Si, Sn, Ge and In and a carbon particle (B) obtained by heat-treating a petroleum-based coke and/or a coal-based coke at a temperature of 2,500° C. or more are connected through a chemical bond such as urethane bond, urea bond, siloxane bond and ester bond. Also disclosed are a negative electrode sheet obtained by coating a current collector with a paste containing the negative electrode material, a binder and a solvent, and then drying and pressure-forming the paste; and a lithium ion battery incorporating the negative electrode sheet.
Abstract:
Composite powder for use in an anode of a lithium ion battery, whereby the particles of the composite powder comprise silicon-based domains in a matrix, whereby the individual silicon-based domains are either free silicon-based domains that are not or not completely embedded in the matrix or are fully embedded silicon-based domains that are completely surrounded by the matrix, whereby the percentage of free silicon-based domains is lower than or equal to 4 weight % of the total amount of Si in metallic or oxidized state in the composite powder.
Abstract:
A negative electrode material for use in a lithium-ion battery is obtained by a method comprising subjecting a carbon particle (B) comprising a graphite material or the like to surface treatment with an oxidizing agent and then removing a residue of the oxidizing agent, modifying the carbon particle (B) from which the residue of the oxidizing agent has been removed with a silane coupling agent, modifying a particle (A) comprising an element capable of occluding and releasing a lithium ion, such as a Si particle, with a silane coupling agent, linking the modified carbon particle (B) and the modified particle (A) via a chemical bond, and coating a composite particle comprising the particle (A) and the carbon particle (B) linked to the particle (A) via a chemical bond with carbon.
Abstract:
A granular composite material, containing: particles (A) each formed of a substance which contains an element capable of intercalating and deintercalating lithium ions and is free of graphite; particles (B) each formed of a substance which contains graphite; carbon fibers (C); a polymer (D) containing a polysaccharide having an unsubstituted or substituted glucopyranose ring or a derivative thereof; and a solid electrolyte (E) containing a linear or branched polyether or a derivative thereof; a negative electrode obtained by laminating an electrode layer containing the granular composite material on a current collector; a method for producing the negative electrode; and a lithium ion secondary battery containing the negative electrode.
Abstract:
Powder comprising particles comprising a matrix material and silicon-based domains dispersed in this matrix material, whereby the matrix material is carbon or a material that can be thermally decomposed to carbon, whereby either part of the silicon-based domains are present in the form of agglomerates of silicon-based domains whereby at least 98% of these agglomerates have a maximum size of 3 μm or less, or the silicon-based domains are not at all agglomerated into agglomerates.
Abstract:
The present invention relates to a negative electrode material for a lithium ion battery, made of a composite material comprising silicon-containing particles, artificial graphite particles and a carbon coating layer, wherein the silicon-containing particles are silicon particles having a SiOx layer (0