Abstract:
An object of the present invention is to provide composite particles capable of suppressing oxidation over time of a Si—C composite material. Composite particles (B) of the present invention contains composite particles (A) containing carbon and silicon; and amorphous layers coating surfaces thereof, where the composite particles (B) have ISi/IG of 0.10 or more and 0.65 or less, and have R value (ID/IG) of 1.00 or more and 1.30 or less, when a peak due to silicon is present at 450 to 495 cm−1, an intensity of the peak is defined as ISi, an intensity of a G band (peak intensity in the vicinity of 1600 cm−1) is defined as IG, and an intensity of a D band (peak intensity in the vicinity of 1360 cm−1) is defined as ID in a Raman spectrum, and where the composite particles (B) have a full width at half maximum of a peak of a 111 plane of Si of 3.0 deg. or more using a Cu-Kα ray in an XRD pattern.
Abstract:
An electrode catalyst ink composition which includes metal oxide-based electrode catalyst particles, an electrolyte, and a mixed liquid medium, wherein the mixed liquid medium contains 40 to 85% by mass of water; 5 to 30% by mass of an aqueous solvent (A) that has an evaporation rate of 2.0 or lower when the evaporation rate of water at 25° C. is 1, and a solubility parameter (SP value) of not less than 9; and 10 to 30% by mass of a monoalcohol (B) that has an evaporation rate of higher than 2.0 when the evaporation rate of water at 25° C. is 1, and not more than 3 carbon atoms, provided that the total amount of the mixed liquid medium is 100% by mass.
Abstract:
Composite carbon particles including a porous carbon material and a silicon component, the composite carbon particle having an average aspect ratio of 1.25 or less, and a ratio (ISi/IG) of a peak intensity (ISi) in the vicinity of 470 cm−1 to a peak intensity (IG) in the vicinity of 1580 cm−1 as measured by Raman spectroscopy of 0.30 or less, wherein the porous carbon material satisfies V1/V0>0.80 and V2/V0
Abstract:
The present invention relates to composite particles containing silicon and carbon, wherein a domain size region of vacancies of 2 nm or less is 44% by volume or more and 70% by volume or less when volume distribution information of domain sizes obtained by fitting a small-angle X-ray scattering spectrum of the composite particles with a spherical model in a carbon-vacancy binary system is accumulated in ascending order, and a true density calculated by dry density measurement by a constant volume expansion method using helium gas is 1.80 g/cm3 or more and 2.20 g/cm3 or less.
Abstract:
A negative electrode material for a lithium-ion secondary battery containing a composite (C) that contains a porous carbon (A) and a Si-containing compound (B). The porous carbon (A) satisfies V1/V0>0.80 and V2/V0
Abstract:
An object of the present invention is to provide carbon-coated Si—C composite particles capable of maintaining a high Si utilization rate and suppressing deterioration of initial coulombic efficiency due to oxidation over time of a lithium-ion secondary battery. The carbon-coated Si—C composite particles of the present invention includes Si—C composite particles containing a carbon material and silicon; and a carbonaceous layer present on surfaces of the Si—C composite particles,
wherein the carbon coverage thereof is 70% or more, wherein the BET specific surface area is 200 m2/g or less; wherein R value (ID/IG) is 0.30 or more and 1.10 or less and ISi/IG is 0.15 or less, when the peak attributed to Si is present at 450 to 495 cm−1 and the intensity of the peak is defined as ISi, in Raman spectrum of the carbon-coated Si—C composite particles: and wherein the full width at half maximum of the peak of a 111 plane of Si is 3.00 deg. or more, and (peak intensity of a 111 plane of SiC)/(peak intensity of the 111 plane of Si) is 0.01 or less, in the XRD pattern measured by powder XRD using a Cu-Kα ray of the carbon-coated Si—C composite particles.
Abstract:
A membrane electrode assembly which includes an anode, a cathode and a solid polymer electrolyte membrane that are specifically arranged, wherein the cathode has a cathode catalyst layer and a cathode diffusion layer that is arranged on a surface of the cathode catalyst layer, the surface being on the side opposite the solid polymer electrolyte membrane side, the cathode catalyst layer contains an oxygen reduction catalyst composed of composite particles each of which is constituted of a catalyst metal containing palladium or a palladium alloy and a catalyst carrier containing, as constituent elements, a specific transition metal element M1, a transition metal element M2 other than the transition metal element M1, carbon, nitrogen and oxygen in a specific ratio, and the cathode diffusion layer contains an oxidation catalyst and a water-repellent resin.