Abstract:
Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
Abstract:
An electrode sheet is capable of suppressing an influence of noise that is applied on a wire, and a biological signal measuring device uses the electrode sheet. The electrode sheet is provided with a sheet, a biological signal receiving electrode formed at the sheet and exposed from the sheet, a biological signal amplifier formed at the sheet, an interface part for connection to an external biological signal processing unit, a first wire that connects the biological signal receiving electrode and an input part of the biological signal amplifier to each other, and a second wire that connects the interface part and an output part of the biological signal amplifier to each other.
Abstract:
Provided is an electrode sheet allowing easy connection of a wiring that is extended, when required, to a measurement position on a living body. The electrode sheet (main sheet (1), auxiliary sheet (10)) includes a sheet-shaped flexible substrate (2, 11), wirings (3, 12) formed on the flexible substrate (2, 11), electrodes (5, 14) formed on the flexible substrate (2, 11) and electrically connected to the wirings (3, 12), and an insulating layer (4, 13) laid on the flexible substrate (2, 11) in such a manner that the wirings (3, 12) are overlaid with the insulating layer (4, 13) while the electrodes (5, 14) are exposed. The electrodes (5, 14) are formed of a conductive material in which conductive particles are dispersed in a thermoplastic resin.
Abstract:
A biosignal measurement apparatus is used by being affixed on a living body. The apparatus includes an affixed part that is a sheet, in which a signal-acquiring section of multiple electrodes and wiring connected to each of the electrodes are formed, and which can be freely expanded, contracted and bent and is adhesive; and a substrate that is connected to the wiring and on which a signal-processing circuit for wirelessly transmitting biosignals obtained through the wiring is mounted. The signal-acquiring section is exposed on the surface of the affixed part and the affixed part and the substrate are stacked so that the back surface of the affixed part faces the substrate.
Abstract:
A biosignal measurement apparatus (10) that is used by being affixed on a living body is provided with: an affixed part (115) that is a sheet, in which a signal-acquiring section (110) of multiple electrodes and wiring connected to each of the electrodes are formed, and which can be freely expanded, contracted and bent and is adhesive; and a substrate (500) that is connected to the wiring and on which a signal-processing circuit for wirelessly transmitting biosignals obtained through the wiring is mounted. The signal-acquiring section (110) is exposed on the surface of the affixed part (115) and the affixed part (115) and the substrate (500) are stacked so that the back surface of the affixed part (115) faces the substrate.
Abstract:
[Problem] To provide an electroconductive ink suitable for an inexpensive carbon wiring substrate having a wide strain sensing range, and a carbon wiring substrate in which the electroconductive ink is used. [Solution] An electroconductive ink characterized by including a carbonaceous electroconductive material (A), a binder resin (B) including a cellulose compound (B1) and a poly N-vinyl compound (B2), and a solvent (C), the electroconductive ink including 0.5-23 parts by mass of the binder resin (B) with respect to 100 parts by mass of the carbonaceous electroconductive material (A), the mass blending ratio of the cellulose compound (B1) and the poly N-vinyl compound (B2) being 80:20 to 40:60, and the solvent (C) including water (C1). A carbon wiring substrate having a wiring pattern formed using the electroconductive ink.
Abstract:
To provide an adhesive sheet, the sheet increasing manufacturing efficiency of products including an adhesive agent layer, while using the adhesive agent layer to which an electro-conductive organic polymer compound is added. An adhesive sheet for use in applying a wiring board to a surface onto which the wiring board is to be applied, the adhesive sheet is constituted by an adhesive agent layer including an electro-conductive organic polymer compound and an adhesive material; a first releasing sheet provided on front surface of the adhesive agent layer; and a second releasing sheet provided on a back surface corresponding to a back surface of the front surface in the adhesive agent layer.
Abstract:
A wiring sheet includes one or more carbon wires each of which is one of a signal line and a power supply line, and which are conductors including carbon as a main material and have flexibility; and an insulation sheet that encloses substantially an entirety of the one or more carbon wires, includes an electrical insulator as a main material, and has flexibility.