Abstract:
Provided are a metal nanowire production method capable of producing long and thin metal nanowires, and metal nanowires produced thereby. A metal nanowire production method comprising, a step for preparing a solution containing a metal salt, a polymer, at least one selected from a group consisting of halides, sulfides, carbonates, and sulfates, and an aliphatic alcohol, and a step for heating and reacting the solution at the temperature of 100° C. to 250° C. for 10 minutes or more while maintaining a practical shear stress applied to the solution at 10 mPa·m or less, wherein, during the heating and reacting step, ultraviolet-visible absorption spectrum change of the solution is measured, and a reaction time is controlled on the basis of the ultraviolet-visible absorption spectrum information.
Abstract:
A bonding device (100) bonds at least one component (C) to a substrate (B) using a metal material (M). The bonding device (100) includes a wall section (20), at least one pressing section (40), and a rotational shaft (30). The rotational shaft (30) is fixed to the wall section (20). Each pressing section (40) has an arm (42) and a presser (43) or a substrate supporting member (90). The arm (42) extends from the rotational shaft (30). The arm (42) pivots about the rotational shaft (30). The presser (43) presses the component (C). The substrate supporting member (90) is disposed on a reference surface (142). The substrate supporting member (90) supports the substrate (B). The component (C) is bonded to the substrate (B) through point contact of the presser (43) with the component (C) or point contact of the substrate supporting member (90) with the reference surface (142).
Abstract:
A sintered material containing silver particles, copper particles, a nitrogen-containing compound, and a reducing agent, in which a primary particle diameter of the silver particles is 200 nm or less, and a volume-based 50% cumulative particle diameter of the copper particles, as measured by laser diffraction/scattering particle diameter distribution measurement, is 1 μm or more.
Abstract:
A silver particle synthesizing method includes reducing a dispersant from first silver particles each covered with the dispersant to obtain second silver particles. The method further includes synthesizing third silver particles each having a larger particle diameter than the second silver particles by causing a reaction between a silver compound and a reductant in a liquid phase containing the second silver particles.
Abstract:
Provided is an electrode like a protruding electrode that is self-standing on a substrate. A conductive paste (202) contains a conductive powder, an alcoholic liquid component, and no adhesives. The conductive powder contains conductive particles having a thickness of 0.05 μm or more and 0.1 μm or less and a representative length of 5 μm or more and 10 μm or less, the representative length being a maximum diameter in a plane perpendicular to the direction of the thickness. The weight percentage of the alcoholic liquid component relative to the conductive paste is 8% or more and 20% or less.
Abstract:
A bonding structure (100) of the present invention includes a substrate (110), a metal film (120), a semiconductor element (130). The substrate (110), the metal film (120), and the semiconductor element (130) are laminated in order just mentioned. The metal film (120) contains a metal diffused through stress migration, and the substrate (110) and the semiconductor element (130) are bonded together with the metal film (120) therebetween.
Abstract:
A bonding structure production method for producing a bonding structure (100) includes at least bonding a semiconductor element (30) and a substrate (10) using a silver paste. The substrate (10) includes a die attachment portion (12) to which the semiconductor element (30) is to be bonded. The die attachment portion (12) includes an alumina layer (16) serving as a surface layer on a bonding side of the die attachment portion (12) to which the semiconductor element (30) is to be bonded. The silver paste contains a solvent and silver particles with a residual strain measured by X-ray diffractometry of at least 5.0%. Preferably, the silver particles have a volume-based 50% cumulative diameter of at least 100 nm and no greater than 50 μm.
Abstract:
A method for synthesizing a copper-silver alloy includes an ink preparation step, a coating step, a crystal nucleus formation step and a crystal nucleus synthesis step. In the ink preparation step, a copper salt particle, an amine-based solvent, and a silver salt particle are mixed, thereby preparing a copper-silver ink. In the coating step, a member to be coated is coated with the copper-silver ink. In the crystal nucleus formation step, at least one of a crystal nucleus of copper having a crystal grain diameter of 0.2 μm or less and a crystal nucleus of silver having a crystal grain diameter of 0.2 μm or less is formed from the copper-silver ink. In the crystal nucleus synthesis step, the crystal nucleus of copper and the crystal nucleus of silver are synthesized.
Abstract:
First, a liquid mixture is obtained by mixing at least a silver compound, a reductant, and a dispersant (S1). Then, the liquid mixture is heated to cause reaction between the silver compound and the reductant and generate first silver particles each having a sheet-like or plate-like shape and second silver particles each having a spherical shape or a shape closer to a sphere than the first silver particles and a particle diameter smaller than a maximum value of a length of a side of each of the first silver particles (S2).