Abstract:
A method manages a fault on a DC voltage side of a converter assembly including a modular multistage converter with switching modules having semiconductor switches and an energy store. Some switching modules are a first type and others are a second type. During operation, a positive switching module voltage, negative switching module voltage or zero voltage are generated at terminals of switching modules of the first type, and a positive switching module voltage or zero voltage are generated at terminals of switching modules of the second type. Upon detecting a DC voltage side fault, switching modules of the first type are actuated such that the polarity of their energy store voltages corresponds to the polarity of a fault current, and energy stores of switching modules of the first type are charged to a voltage exceeding their rated voltage. A converter assembly carrying out the method is also provided.
Abstract:
A modular multilevel converter has a plurality of sub-modules, each of which includes at least two electronic switching elements and an electrical energy storage device. The sub-modules are controlled by a control device. An optical output of the control device of the converter is connected to an input of an optical distributor by way of a first optical waveguide. A plurality of outputs of the optical distributor are individually connected to an optical input of one of the sub-modules, respectively, by way of a second optical waveguide.
Abstract:
A converter station for the transmission of electrical power has a diode rectifier with a DC terminal and an AC terminal. At least one transformer is connected to the AC terminal. In order to render the converter station as compact as possible, the diode rectifier is arranged in an insulating material.
Abstract:
A commutating circuit for an electronic power converter has a first switching device, by which the electronic power converter can be electrically bridged, and a circuit part for limiting the size of the time-related voltage change of a voltage present on the first switching device. The circuit part limits the time-related voltage variation.
Abstract:
A DC-DC converter for connecting high-voltage DC networks has series-connected sub-converters. The high-voltage DC networks which can be connected to the DC-DC converter can have different transmission symmetries by way of power exchanging devices and additional power exchanging devices. Thus, a symmetrical monopole can be connected to an asymmetrical bipolar network using the invention.
Abstract:
A method for switching an operating current in a meshed DC voltage network enables operating currents in a DC voltage network to be switched economically in both directions. At least one converter connected to the DC voltage network is controlled in such a way that a zero current is generated in a switching branch having a mechanical switch and the mechanical switch is actuated in accordance with the generated zero current.
Abstract:
A modular multilevel converter includes a plurality of sub-modules. Each of the sub modules has at least two electronic switching elements, an electrical energy storage device, two galvanic power terminals, an optical communication input (222) and an optical communication output. A plurality of the sub-modules is connected to a series circuit by way of their communication input and communication output.
Abstract:
A measuring device measures an electrical current and contains a light source for generating a polarized primary light signal for feeding into a Faraday sensor unit, and a detector for detecting a secondary light signal provided by the Faraday sensor unit and polarization-altered in relation to the primary light signal. An optical-electrical compensation element, by which the polarization alteration of the secondary light signal can be compensated via an opposite polarization alteration, and a measurement signal, according to the opposite polarization alteration, for the electrical current can be deduced. A method for measuring an electrical current by use of the measuring device is further disclosed.
Abstract:
A module for a converter includes submodules, a first coupling inductor and a second coupling inductor which is activatable in the event of a fault. A method for controlling fault currents in a converter is also provided.
Abstract:
A device switches a direct current. The device contains an operating current branch in which a mechanical switch is arranged, a protective switch connected to the operating current branch for interrupting the current flow in the operating current branch, a capacitor branch connected in parallel with the operating current branch in which capacitor branch a capacitor is arranged, and a damping apparatus which has a resistance element. The damping apparatus is arranged in the capacitor branch in series with the capacitor or in the operating current branch in series with the mechanical switch, which damping apparatus can be bypassed by a bypass switch connected in parallel with the damping apparatus.