Abstract:
An electric generator arrangement with a stator being equipped with at least two opposed phase windings, each winding comprising at least two sub-windings in series is provided. The arrangement also comprises a controlled varistor across the connections of the sub-windings of said opposed phase windings. A current imbalance between two opposed phase windings is measured and the varistor is controlled in such a way that the resistance of the varistor is increased when the current imbalance increases.
Abstract:
A bearing arrangement of an electrical machine is provided that includes a drive shaft extending through a housing, the bearing arrangement including a front-end bearing arranged about a front end of the drive shaft, and a back-end bearing arranged about an opposite end of the drive shaft, wherein a bearing includes a plurality of bearing pads arranged in an annular space between the drive shaft and the housing, and wherein at least one bearing includes an uneven distribution of bearing pads about the drive shaft. Furthermore, a wind turbine including such a bearing arrangement is also provided.
Abstract:
A stator assembly is provided including (a) an inner frame structure having an annular shape with an inner circumferential edge and an outer circumferential edge, wherein the inner frame structure is formed around a center axis corresponding to an axial direction of the electric generator; and (b) an outer frame structure, which surrounds the inner frame structure and which, starting from the outer circumferential edge, includes two inclined annular walls which, along a radial direction, spread apart from each other such that in between a first inclined annular wall and the second inclined annular wall there is formed an accommodation space. Preferably, the inner frame structure and the outer frame structure are made from a single piece.
Abstract:
An electric generator is provided including a stator assembly, a rotor assembly being rotatably supported at the stator assembly for rotating around a rotational axis, an annular device being fixed to the rotor assembly and including an engagement structure, and a first turning device being mounted to the stator assembly, the first turning device including an actuator and an engagement element being drivable by the actuator. The first turning device is configured for adopting two operational states, an active operational state and a passive operational state. In the active operational state there is an engagement between the engagement element and the engagement structure and in the passive operational state the engagement element and the engagement structure are mechanically decoupled from each other.
Abstract:
An outer rotor construction for a wind turbine generator which outer rotor construction comprises a plurality of rotor housing segments, wherein a rotor housing segment is realized to hold a number of magnet poles, and wherein a rotor housing segment comprises a lateral connecting interface of a lateral connection for detachably connecting that rotor housing segment along its longitudinal length to a number of adjacent rotor housing segments. The invention further describes a wind turbine including a generator, which generator includes an inner stator and such an outer rotor is provided. A method of performing a maintenance procedure on such an outer rotor construction is also provided.