Abstract:
An apparatus for dampening of acoustic noise generated by air-cooling of at least one wind turbine component provided with the nacelle of a wind turbine is provided. Apparatus for dampening of acoustic noise generated by air-cooling of at least one wind turbine component provided with the nacelle of a wind turbine, comprising at least one acoustic dampening means, with the acoustic dampening means including at least one acoustic dampening channel structure having at least one acoustic dampening channel connected with at least one inlet opening of the acoustic dampening channel structure and at least one outlet opening of the acoustic dampening channel structure.
Abstract:
A method of handling a direct drive generator of a wind turbine is provided. The direct drive generator comprises a stator and a rotor concentrically arranged about an axis of the direct drive generator. The method includes steps of placing the direct drive generator on a support structure, fixing a selected one of the stator or the rotor to the support structure, connecting actuator means to a remaining one of the stator or the rotor, and rotating the remaining one of the stators or the rotor using the actuator means.
Abstract:
A bearing arrangement of an electrical machine is provided that includes a drive shaft extending through a housing, the bearing arrangement including a front-end bearing arranged about a front end of the drive shaft, and a back-end bearing arranged about an opposite end of the drive shaft, wherein a bearing includes a plurality of bearing pads arranged in an annular space between the drive shaft and the housing, and wherein at least one bearing includes an uneven distribution of bearing pads about the drive shaft. Furthermore, a wind turbine including such a bearing arrangement is also provided.
Abstract:
A stator assembly is provided including (a) an inner frame structure having an annular shape with an inner circumferential edge and an outer circumferential edge, wherein the inner frame structure is formed around a center axis corresponding to an axial direction of the electric generator; and (b) an outer frame structure, which surrounds the inner frame structure and which, starting from the outer circumferential edge, includes two inclined annular walls which, along a radial direction, spread apart from each other such that in between a first inclined annular wall and the second inclined annular wall there is formed an accommodation space. Preferably, the inner frame structure and the outer frame structure are made from a single piece.
Abstract:
A wind turbine generator cooling system whereby the electrical generator includes a stator, a rotor, and an air gap between the stator and the rotor, and the rotor is rotatable in respect to the stator around an axis of rotation. The generator includes a cavity that is abutting on the stator in a radial direction, whereby a fan is connected to the cavity, so that the fan moves air through the cavity to cool the generator. A duct extends through the cavity in a mainly axial direction from a first side of the generator to a second side of the generator to allow the air that moves through the cavity, that cools the generator, and that collects at least partially at the first side of the generator, to flow from the first side of the generator to the second side of the generator to exit the generator.
Abstract:
An airflow control arrangement for a direct-drive wind-turbine with a generator comprising a rotor and a stator, which airflow control arrangement comprises an outflow fan arranged to draw an exit airflow through an exit duct, which exit duct extends from an interior cavity of the stator to the exterior of the wind turbine. The invention further describes a direct-drive wind turbine comprising such an airflow control arrangement. The invention further describes a method of controlling an airflow in a direct-drive wind-turbine with a generator comprising a rotor and a stator is provided.
Abstract:
An electric generator is provided including a stator assembly, a rotor assembly being rotatably supported at the stator assembly for rotating around a rotational axis, an annular device being fixed to the rotor assembly and including an engagement structure, and a first turning device being mounted to the stator assembly, the first turning device including an actuator and an engagement element being drivable by the actuator. The first turning device is configured for adopting two operational states, an active operational state and a passive operational state. In the active operational state there is an engagement between the engagement element and the engagement structure and in the passive operational state the engagement element and the engagement structure are mechanically decoupled from each other.
Abstract:
A bearing for a wind turbine, the use of the bearing and a method to control the temperature of the bearing is provided. A bearing for a wind turbine comprises an inner ring and an outer ring. The inner ring and the outer ring are prepared and arranged in a way to rotate with respect to each other. The inner ring comprises at least one channel. The channel is prepared and arranged in a way that air flows along inside the channel so that excess heat of the inner ring is removed by the airflow in the channel.
Abstract:
Disclosed is a wind turbine, which comprises a rotatable structure being coupled to a hub of the wind turbine and to a generator rotor comprising a brake disc, a stationary structure being coupled to a generator stator and comprising a stator frame and a safety bearing element. The rotatable structure is rotatably coupled to the stationary structure, wherein the stator frame (102) comprises a brake mounting section to which a calliper brake is mountable such that the brake disc is breakable by the mounted calliper brake. The safety bearing element is mounted to the brake mounting section such that the brake disc is in slidable contact with the safety bearing element if a distance between the brake mounting section and the brake disc is reduced below a predetermined reference value.