Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.
Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.
Abstract:
A variable resistive memory device may include a phase change region, a phase change layer, a gap-filling layer and an upper electrode. The phase change region may have a sidewall and a bottom surface. The phase change layer may have a linear shape extended along the bottom surface and the sidewall of the phase change region. The gap-filling layer may be formed in a portion of the phase change region surrounded by the phase change layer. The upper electrode may be formed on the phase change layer and the gap-filling layer.