Abstract:
Provided are a wafer level package and a manufacturing method thereof. A reconfigured substrate may be formed by disposing a first semiconductor die on a dummy wafer, and forming a molding layer and a mold covering layer. A second semiconductor die may be stacked on the first semiconductor die and a photosensitive dielectric layer may be formed. Conductive vias penetrating the photosensitive dielectric layer may be plated.
Abstract:
A method of manufacturing a semiconductor device includes forming a first photoresist layer on a substrate and forming a second photoresist layer on the first photoresist layer. The method also includes forming a first dissolvable region having a first width in the first photoresist layer and a second dissolvable region having a second width different from the first width in the second photoresist layer by radiating exposure light to some parts of the second and first photoresist layer. The method further includes forming a second opening in the second photoresist layer and a first opening in the first photoresist layer by developing the second dissolvable region and the first dissolvable region. The method additionally includes forming a conductive bump that fills the first and second openings.
Abstract:
A semiconductor device comprises a substrate including first and second regions; a plurality of conductive line structures disposed over the substrate; a plurality of conductive contact plugs formed between the conductive line structures disposed over the first region of the substrate; and a plurality of dummy dielectric plugs disposed over the second region of the substrate.
Abstract:
Present invention is related to a semiconductor device with an improved reliability and a method for the same. A method for fabricating a semiconductor device according to an embodiment of the present invention may comprise: forming a plurality of bit line structures over a substrate; forming line-shaped openings between the bit line structures; forming a stopper structure on edges of the line-shaped openings; filling a line pattern in each of the line-shaped openings; forming a plurality of contact plugs and a plurality of isolation grooves by etching the line patterns; and filling a plug isolation layer in the isolation grooves.
Abstract:
A method for fabricating a semiconductor device includes: forming an insulating layer over a substrate including a cell region and a peripheral region; forming an opening in the insulating layer by selectively etching the insulating layer in the cell region; forming a plug conductive layer to fill the opening and cover the insulating film; etching the plug conductive layer and the insulating layer in the peripheral region by using a peri-open mask covering the cell region; trimming the peri-open mask to expose the plug conductive layer in a boundary region where the cell region and the peripheral region contact each other; etching the plug conductive layer in the boundary region by using the trimmed peri-open mask; forming a peri-gate conductive layer over the entire surface of the substrate; and etching the peri-gate conductive layer by using a cell open mask.
Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.
Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.