Abstract:
A variable resistance memory device and a method of manufacturing the same are provided. The variable resistance memory device includes a first insulating layer formed on a semiconductor substrate, the first insulating layer having a first hole formed therein. A switching device is formed in the first hole. A second insulating layer is formed over the first insulating layer and the second insulating layer includes a second hole. A lower electrode is formed along a surface of the second insulating layer that defines the second hole. A spacer is formed on the lower electrode and exposes a portion of the surface of the lower electrode. A variable resistance material layer is formed in the second hole, and an upper electrode is formed on the variable resistance material layer.
Abstract:
A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a bottom structure including a heating electrode, data storage materials, each of the data storage materials formed on the bottom structure in a confined structure perpendicular to the bottom structure, and having a lower diameter smaller than an upper diameter, an upper electrode formed on each of the data storage materials, and an insulation unit formed between adjacent data storage materials.
Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.
Abstract:
A method of semiconductor device fabrication that includes sequentially forming an interfacial conductive layer and an etch stop layer on a resistive memory layer; forming a main conductive layer on the etch stop layer; exposing a portion of the etch stop layer by patterning the main conductive layer; exposing a portion of the interfacial conductive layer by patterning the portion of the etch stop layer; forming an upper electrode structure by patterning the portion of the interfacial conductive layer; cleaning a surface of the upper electrode structure and an exposed surface of the resistive memory layer; and patterning the resistive memory layer using the upper electrode structure as an etch mask.
Abstract:
A variable resistance memory device and a method of manufacturing the same are provided. The variable resistance memory device includes a first insulating layer formed on a semiconductor substrate, the first insulating layer having a first hole formed therein. A switching device is formed in the first hole. A second insulating layer is formed over the first insulating layer and the second insulating layer includes a second hole. A lower electrode is formed along a surface of the second insulating layer that defines the second hole. A spacer is formed on the lower electrode and exposes a portion of the surface of the lower electrode. A variable resistance material layer is formed in the second hole, and an upper electrode is formed on the variable resistance material layer.
Abstract:
A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a bottom structure including a heating electrode, data storage materials, each of the data storage materials formed on the bottom structure in a confined structure perpendicular to the bottom structure, and having a lower diameter smaller than an upper diameter, an upper electrode formed on each of the data storage materials, and an insulation unit formed between adjacent data storage materials.