Abstract:
A cutting element may include a substrate, an upper surface of the substrate including a crest, the crest transitioning into a depressed region, and an ultrahard layer on the upper surface, thereby forming a non-planar interface between the ultrahard layer and the substrate. A top surface of the ultrahard layer includes a cutting crest extending along at least a portion of a diameter of the cutting element, the top surface having a portion extending laterally away from the cutting crest having a lesser height than a peak of the cutting crest.
Abstract:
A method for making a diamond compact includes pre-heating a diamond body which includes a carbonate catalyst to convert at least a portion of the carbonate catalyst into an oxide, assembling the diamond body and a substrate, providing a braze material between the diamond body and the substrate to form a diamond compact, heating the braze material to melt the braze material and form a braze joint between the diamond body and the substrate, and cooling the braze material after increasing the pressure. A bit having a diamond compact including a carbonate catalyst and a metal oxide mounted thereon.
Abstract:
A cutting element may include a substrate, an upper surface of the substrate including a crest, the crest transitioning into a depressed region, and an ultrahard layer on the upper surface, thereby forming a non-planar interface between the ultrahard layer and the substrate. A top surface of the ultrahard layer includes a cutting crest extending along at least a portion of a diameter of the cutting element, the top surface having a portion extending laterally away from the cutting crest having a lesser height than a peak of the cutting crest.
Abstract:
A cutting element may include a substrate, an upper surface of the substrate including a crest, the crest transitioning into a depressed region, and an ultrahard layer on the upper surface, thereby forming a non-planar interface between the ultrahard layer and the substrate. A top surface of the ultrahard layer includes a cutting crest extending along at least a portion of a diameter of the cutting element, the top surface having a portion extending laterally away from the cutting crest having a lesser height than a peak of the cutting crest.
Abstract:
Methods for joining an ultra-hard body, such as a thermally stable polycrystalline diamond (TSP) body, to a substrate and mitigating the formation of high stress concentration regions between the ultra-hard body and the substrate. One method includes covering at least a portion of the ultra-hard body with an intermediate layer, placing the ultra-hard body and the intermediate layer in a mold, filling a remaining portion of mold with a substrate material including a matrix material and a binder material such that the intermediate layer is disposed between the ultra-hard body and the substrate material, and heating the mold to an infiltration temperature configured to melt the binder material and form the substrate.
Abstract:
A cutting element may include a substrate; and an ultrahard layer on the substrate, the substrate and the ultrahard layer defining a non-planar working surface of the cutting element such that the ultrahard layer forms a cutting portion and the substrate is at least laterally adjacent to the ultrahard layer. Another cutting element includes a pointed region having a side surface extending from the pointed region outer perimeter to a peak. An ultrahard material body forms a portion of the pointed region including the peak, and a base region extends a depth from the pointed region outer perimeter. The ultrahard material body has a height to width aspect ratio with the height and width measured between two points of the body having the greatest distance apart along a dimension parallel with a longitudinal axis (i.e., height) along a dimension perpendicular to the longitudinal axis (i.e., width).
Abstract:
A method of making a cutting element includes subjecting a mixture of diamond particles and a carbonate material to high-pressure high-temperature sintering conditions to form a sintered carbonate-polycrystalline diamond body having a diamond matrix of diamond grains bonded together and carbonates residing in the interstitial regions between the diamond grains, the carbonate material having a non-uniform distribution throughout the diamond matrix. The carbonate-polycrystalline diamond body is subjected to a controlled temperature, a controlled pressure condition or a combination thereof, to effect an at least partial decomposition of the carbonate material.
Abstract:
Methods for joining an ultra-hard body, such as a thermally stable polycrystalline diamond (TSP) body, to a substrate and mitigating the formation of high stress concentration regions between the ultra-hard body and the substrate. One method includes covering at least a portion of the ultra-hard body with an intermediate layer, placing the ultra-hard body and the intermediate layer in a mold, filling a remaining portion of mold with a substrate material including a matrix material and a binder material such that the intermediate layer is disposed between the ultra-hard body and the substrate material, and heating the mold to an infiltration temperature configured to melt the binder material and form the substrate.
Abstract:
A cutting element may include a substrate; and an ultrahard layer on the substrate, the substrate and the ultrahard layer defining a non-planar working surface of the cutting element such that the ultrahard layer forms a cutting portion and the substrate is at least laterally adjacent to the ultrahard layer. Another cutting element includes a pointed region having a side surface extending from the pointed region outer perimeter to a peak. An ultrahard material body forms a portion of the pointed region including the peak, and a base region extends a depth from the pointed region outer perimeter. The ultrahard material body has a height to width aspect ratio with the height and width measured between two points of the body having the greatest distance apart along a dimension parallel with a longitudinal axis (i.e., height) along a dimension perpendicular to the longitudinal axis (i.e., width).