Abstract:
Disclosed herein is an optical detector at least including: a first substrate in which a plurality of wells are formed; a second substrate in which a heating section is provided to heat the wells; a third substrate in which a plurality of photoirradiation sections are provided in alignment with the wells; and a fourth substrate in which a plurality of photodetection sections are provided in alignment with the wells.
Abstract:
There is provided a data processing apparatus including: a data determination portion that specifies, in each of first and second light intensity distribution data, an analysis range corresponding to a storage area for storing a detection target, the first and second light intensity distribution data being acquired on the basis of light emitted from first and light sources to a detection area; and a mode selection portion that selects an operation mode of the data determination portion. The mode selection portion selects one of a first mode in which the data determination portion specifies the analysis range in each of the first light intensity distribution data and the second light intensity distribution data, and a second mode in which the data determination portion specifies the analysis range in the second light intensity distribution data on the basis of information on the analysis range of the first light intensity distribution data.
Abstract:
Disclosed herein is an optical detector at least including: a first substrate in which a plurality of wells are formed; a second substrate in which a heating section is provided to heat the wells; a third substrate in which a plurality of photoirradiation sections are provided in alignment with the wells; and a fourth substrate in which a plurality of photodetection sections are provided in alignment with the wells.
Abstract:
Disclosed herein is an optical detector at least including: a first substrate in which a plurality of wells are formed; a second substrate in which a heating section is provided to heat the wells; a third substrate in which a plurality of photoirradiation sections are provided in alignment with the wells; and a fourth substrate in which a plurality of photodetection sections are provided in alignment with the wells.
Abstract:
A biometrics authentication system having a small and simple configuration and being capable of implementing both of biometrics authentication and position detection is provided. A biometrics authentication system includes a light source emitting light to an object, a microlens array section condensing light from the object, a light-sensing device obtaining light detection data of the object on the basis of the light condensed by the microlens array section, a position detection section detecting the position of the object on the basis of the light detection data obtained in the light-sensing device, and an authentication section, in the case where the object is a living body, performing authentication of the living body on the basis of the light detection data obtained in the light-sensing device.
Abstract:
There is provided a data processing apparatus including: a data determination portion that specifies, in each of first and second light intensity distribution data, an analysis range corresponding to a storage area for storing a detection target, the first and second light intensity distribution data being acquired on the basis of light emitted from first and light sources to a detection area; and a mode selection portion that selects an operation mode of the data determination portion. The mode selection portion selects one of a first mode in which the data determination portion specifies the analysis range in each of the first light intensity distribution data and the second light intensity distribution data, and a second mode in which the data determination portion specifies the analysis range in the second light intensity distribution data on the basis of information on the analysis range of the first light intensity distribution data.
Abstract:
Disclosed herein is an optical detector at least including: a first substrate in which a plurality of wells are formed; a second substrate in which a heating section is provided to heat the wells; a third substrate in which a plurality of photoirradiation sections are provided in alignment with the wells; and a fourth substrate in which a plurality of photodetection sections are provided in alignment with the wells.
Abstract:
There is provided an optical measuring apparatus including a control unit that compensates detection light generated from a reaction area in a microchip, based on optical information from a detection-light-quantity calibration area.