Abstract:
Described are devices, methods, and systems that are suitable for rapidly and simultaneously determining the concentration of suspended particles in a sample. The devices, methods, and systems allow for the rapid and simultaneous interrogation of a large number of sample wells in a single vessel, for example, samples contained in a two-dimensional array or micro-titer plate, without the need for moving reading heads or moving the sample vessel. The nephelometry system allows the user to rapidly and simultaneously measure the concentration of the particles in numerous samples, adjust the concentration of the particles in the sample with a sample handling system, and re-measure the concentration of the samples in order to achieve a desired concentration.
Abstract:
Microplate reader has a housing, at least one optical measuring/detection device, a microplate support, a moving unit and an integrated lid holding apparatus. The lid holding apparatus moves the microplate in one respective, at least approximately vertical direction for moving the microplate lid away from the microplate. The lid holding apparatus is arranged inside the housing as a magnetic lifter and comprises a non-array arrangement of at least one permanent magnet, or at least three electro magnets, or at least one switchable permanent magnet. Each microplate lid to be moved away from the microplate comprises magnetizable material with a physical area. A projected area of the at least one permanent magnet, electro magnet, or switchable permanent magnet is smaller than the physical area of the magnetizable material of the microplate lid.
Abstract:
A sample holding carrier includes: a substrate to which irradiation light is entered from an under face; a first reflective film disposed on a top face side of the substrate and having electrical conductivity; a sample accommodating portion disposed on a top face side of the first reflective film and having a bottom portion; and a first current carrying part configured to apply a voltage to the first reflective film from an outside.
Abstract:
A system for detecting target elements such as bacteria in a host analyte, comprising a substrate with an ordered array of wells having diameters to fit the size of the targets. The substrate may be a periodic macro-PSi array structure (MPSiAS) illuminated with a broadband source. The reflected light spectrum diffracted from the substrate is optically analyzed to provide the effective optical depth of the wells. Fast Fourier Transform analysis may be used for the optical analysis. Entry of target elements into wells is detected by the change in the effective optical depths of the wells. Micro-organisms as large as bacteria and viruses having dimensions comparable with the wavelength of the illumination can thus be detected. Wells with an inner section impenetrable by the target cells enables compensation for environmental changes. The detection may be performed in real time, such that production line bacterial monitoring may be achieved.
Abstract:
Light emitting diodes (LEDs) are mounted in an array to an upper structure overlying a lower structure with a plurality of light detectors thereon. Each LED is configured to overlie a separate detector. Each LED emits light at a frequency relevant for measuring optical density of a specimen. LEDs having different frequencies are included within the LED array. A corresponding array of detectors is also provided, mounted to the lower structure. Spacing between adjacent LEDs and between adjacent detectors match a spacing between wells in a microtiter plate. Spacing between the lower structure and the upper structure supporting the LEDs is sufficient for the microtiter plate to fit between. Circuitry sequentially fires individual LEDs and gathers optical density data through the detectors for specimens in the wells of the microtiter plate. The structures are then moved to a next adjacent well position on the microtiter plate and the process repeated.
Abstract:
An electro-optical stimulation and recording system is disclosed, including a substrate and a plurality of wells coupled to the substrate. The system also includes at least one electrode set disposed proximate a respective one of the plurality of wells, wherein the electrode set comprises at least one electrode configured to collect an electric signal associated with at least a portion of the respective well. The system also includes a light-emitting element set corresponding to a respective one of the wells and configured to deliver optical stimulation to at least a portion of the respective well.
Abstract:
A method for observing stem cells by an observation device 1 comprises, placing stem cells C in a petri dish 11, mounting the petri dish 11 on a waveguide 21 via water 13, emitting illumination light L1 into the waveguide 21 and emitting the illumination light L1 to the stem cells C in the petri dish 11 via the water 13, and detecting scattered light L2, the scattered light L2 being the illumination light L1 emitted to the stem cells C that is scattered by the stem cells C and has passed through the waveguide 21. Then, in the light image detected by means of the scattered light L2, a region that is markedly darker than other regions is identified as being in the state tending toward differentiation.
Abstract:
A blood analysis apparatus is provided. The blood analysis apparatus includes: a chip holding portion having an aperture which allows light to pass therethrough and holding a μ-TAS chip for holding a measurement liquid; a rotary body on which the chip holding portion is mounted; a light source; and a light-receiving unit. A measurement position of the rotary body at which the measurement liquid is to be measured with the light from the light source is set by: rotating the rotary body to obtain a light value of light which is emitted from the light source and received by the light-receiving unit through the aperture; and setting a rotational position of the rotary body where the light value is a threshold value or more, as the measurement position.
Abstract:
A light amount is increased and an analyzing accuracy can be kept in accordance with an enlargement of a load angle, however, a scattered light tends to be loaded in an analysis accompanying the scattered light and a dynamic range of a concentration which can be measured becomes narrow. A light is dispersed by a light dispersing portion, a load angle of the received light is changed per wavelength, the load angle is made larger in the light of a wavelength having a small light amount, and the load angle is made smaller in the light a wavelength having a large light amount and used for an analysis accompanying a scattered light. Accordingly, it is possible to gain a dynamic range of a concentration which can be measured in the analysis accompanying the scattered light, while increasing the light amount and maintaining the analyzing accuracy.