Abstract:
Cardiac ablation devices and systems are disclosed. A system in accordance with the present disclosure comprises an ablation generator, an electronic control unit (ECU), a control system, and a catheter. The catheter comprises at least one ablation electrode, a catheter shaft including a fluid lumen, and a plurality of thermal sensors. The ECU is configured to receive temperature measurement data from the plurality of thermal sensors, determine a power rate delivery value based on the temperature measurement data, and output the power rate delivery value. The control system is configured to receive the power rate delivery value and control energy delivery of the ablation generator based at least in part on the power rate delivery value.
Abstract:
A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.
Abstract:
A family of catheter electrode assemblies includes a flexible circuit having a plurality of electrical traces and a substrate; a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the electrode. A non-contact electrode mapping catheter includes an outer tubing having a longitudinal axis, a deployment member, and a plurality of splines, at least one of the plurality of splines comprising a flexible circuit including a plurality of electrical traces and a substrate, a ring electrode surrounding the flexible circuit and electrically coupled with at least one of the plurality of electrical traces; and an outer covering extending over at least a portion of the ring electrode. A method of constructing the family of catheter electrode assemblies is also provided.
Abstract:
Embodiments of a guide and flexible sleeve for use with catheters for ablation or other medical procedures are disclosed. An exemplary catheter comprises a guide element having a proximal end and a distal end, the distal end configurable in a desired shape. A flexible sleeve is conformable to the guide element so that the flexible sleeve slides over the guide element, the flexible sleeve has a proximal end and a distal end. A controller couples to the flexible sleeve. The controller operates to move the flexible sleeve at least part way between the distal end of the guide element and the proximal end of the guide element. At least one ablation element disposed at the distal end of the flexible sleeve operates to form a substantially continuous ablative lesion when the flexible sleeve is in contact with a contiguous volume of target tissue.
Abstract:
A system for providing irrigation fluid during ablation of tissue includes a catheter, an electrode assembly, at least one thermal sensor adapted to be connected to the catheter, and a control system. The electrode assembly is adapted to be connected to an ablation generator. The thermal sensor is adapted to be operatively connected to an electronic control unit (ECU). The ECU receives as an input temperature measurement data from the thermal sensor; determines a power delivery rate value for the ablation generator responsive to the temperature measurement data; and outputs the power delivery rate value. The control system also delivers irrigation fluid to the irrigated catheter at a first flow rate in a first time period and at a second flow rate in a second time period that is temporally after the first time period. The second flow rate is at least half of the first flow rate.
Abstract:
An electrophysiology catheter includes an elongate catheter body having an elastically-deformable distal region predisposed to assume a spiral shape and a first plurality of electrodes disposed thereon. Each of the first plurality of electrodes includes an electrically active region limited to the inner surface of the spiral shape for use in non-contact electrophysiology studies. A second plurality of electrodes may also be disposed on the distal region interspersed (e.g., alternating) with the first plurality of electrodes, with each of the second plurality of electrodes having an electrically active region extending into the outer surface of the spiral shape for use in contact electrophysiology studies. The distal region may be deformed into a straight configuration for insertion into and navigation through the patient's vasculature, for example via use of a tubular introducer. As the distal region deploys beyond the distal end of the introducer, it resumes the spiral shape.
Abstract:
An electrode support structure assembly is provided comprising an electrode support structure including a plurality of splines. Each of the plurality of splines can have a proximal end portion and a distal end portion. The assembly further comprises a first element defining an axis and comprising an outer surface. The outer surface comprises a plurality of slots configured to receive the distal end portion of each of the plurality of splines. The first element is configured such that the distal end portion of each of the plurality of splines may move with respect to each slot. In accordance with some embodiments, the distal end portion of each of the plurality of splines comprises a section configured for engagement with the first element, wherein the section comprises a shoulder.
Abstract:
An electrode support structure assembly is provided comprising an electrode support structure including a plurality of splines. Each of the plurality of splines can have a proximal end portion and a distal end portion. The assembly further comprises a first element defining an axis and comprising an outer surface. The outer surface comprises a plurality of slots configured to receive the distal end portion of each of the plurality of splines. The first element is configured such that the distal end portion of each of the plurality of splines may move with respect to each slot. In accordance with some embodiments, the distal end portion of each of the plurality of splines comprises a section configured for engagement with the first element, wherein the section comprises a shoulder.
Abstract:
An electrophysiology catheter includes an elongate catheter body having an elastically-deformable distal region predisposed to assume a spiral shape and a first plurality of electrodes disposed thereon. Each of the first plurality of electrodes includes an electrically active region limited to the inner surface of the spiral shape for use in non-contact electrophysiology studies. A second plurality of electrodes may also be disposed on the distal region interspersed (e.g., alternating) with the first plurality of electrodes, with each of the second plurality of electrodes having an electrically active region extending into the outer surface of the spiral shape for use in contact electrophysiology studies. The distal region may be deformed into a straight configuration for insertion into and navigation through the patient's vasculature, for example via use of a tubular introducer. As the distal region deploys beyond the distal end of the introducer, it resumes the spiral shape.
Abstract:
An electrode support structure assembly is provided comprising an electrode support structure including a plurality of splines. Each of the plurality of splines can have a proximal end portion and a distal end portion. The assembly further comprises a first element defining an axis and comprising an outer surface. The outer surface comprises a plurality of slots configured to receive the distal end portion of each of the plurality of splines. The first element is configured such that the distal end portion of each of the plurality of splines may move with respect to each slot. In accordance with some embodiments, the distal end portion of each of the plurality of splines comprises a section configured for engagement with the first element, wherein the section comprises a shoulder.