Abstract:
A multi-level sigma-delta Analog to Digital converter provides multi-level outputs using a quantizer with reduced quantization levels. The converter comprises a direct path comprising a computation block, an analog integrator and the quantizer with reduced quantization levels. Further, the converter comprises a feedback path arranged to provide to the computation block a feedback analog signal. The direct path comprises a first amplification block having a gain factor which is the inverse of the gain factor of a second amplification block of the feedback path. The converter allows reduction of the complexity of the quantizer.
Abstract:
A multi-level sigma-delta Analog to Digital converter provides multi-level outputs using a quantizer with reduced quantization levels. The converter comprises a direct path comprising a computation block, an analog integrator, a digital integrator and the quantizer with reduced quantization levels. Further, the converter comprises a feedback path arranged to provide to the computation block a feedback analog signal. The feedback analog signal is injected via the feedback path and the computation block directly at the input terminal of the quantizer. The converter allows reduction of the complexity of the quantizer.
Abstract:
A multi-level sigma-delta Analog to Digital converter provides multi-level outputs using a quantizer with reduced quantization levels. The converter comprises a direct path comprising a computation block, an analog integrator, a digital integrator and the quantizer with reduced quantization levels. Further, the converter comprises a feedback path arranged to provide to the computation block a feedback analog signal. The feedback analog signal is injected via the feedback path and the computation block directly at the input terminal of the quantizer. The converter allows reduction of the complexity of the quantizer.
Abstract:
A multi-level sigma-delta Analog to Digital converter provides multi-level outputs using a quantizer with reduced quantization levels. The converter comprises a direct path comprising a computation block, an analog integrator and the quantizer with reduced quantization levels. Further, the converter comprises a feedback path arranged to provide to the computation block a feedback analog signal. The direct path comprises a first amplification block having a gain factor which is the inverse of the gain factor of a second amplification block of the feedback path. The converter allows reduction of the complexity of the quantizer.