Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
Techniques for implementing machine learning to improve claim handling are disclosed. In some scenarios, the machine-learning, analytics model may be trained in accordance with data that is relevant to insurance products, such as life and health insurance. A set of labeled historical claims each corresponding to a settlement amount may be analyzed to train an artificial neural network. A claim may be received from a user mobile device, and may be analyzed using the trained artificial neural network to predict a claim settlement, which may be used to generate a settlement offer. The settlement offer may be transmitted to the user's mobile device, and if a manifestation of acceptance is received from the user, then the claim may be automatically paid.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). The UAV receives an instruction to collect information on at least one aspect of a property, and identifies one or more onboard sensors of the UAV to collect the information on the at least one aspect of the property, where the UAV is configured to identify a first set of one or more onboard sensors to collect a first type of data and to identify a second set of one or more onboard sensors to collect a second type of data. The UAV also collects the information on the at least one aspect of the property using the one or more onboard sensors, and identifies, based on the collected information, a type of damage incurred on the at least one aspect of the property.
Abstract:
Methods, systems, and computer readable media are disclosed for determining a pixel-to-length ratio between a number of pixels disposed over a predetermined length of a reference object within an image of a siding sample and the predetermined length of the reference object. A first and second distance between respective first and second pairs of points within the image corresponding to respective first and second length measurements of the siding sample are determined, as well as a first and second number of pixels disposed between the first and second pair of points, respectively. Furthermore, the method, system, and computer readable medium disclose determining the first length measurement based on the pixel-to-length ratio and the first number of pixels, determining the second length measurement based on the pixel-to-length ratio and the second number of pixels, and identifying a siding product associated with the first and second length measurements.
Abstract:
Methods, systems, and computer readable media are disclosed for determining a pixel-to-length ratio between a number of pixels disposed over a predetermined length of a reference object within an image of a siding sample and the predetermined length of the reference object. A first and second distance between respective first and second pairs of points within the image corresponding to respective first and second length measurements of the siding sample are determined, as well as a first and second number of pixels disposed between the first and second pair of points, respectively. Furthermore, the method, system, and computer readable medium disclose determining the first length measurement based on the pixel-to-length ratio and the first number of pixels, determining the second length measurement based on the pixel-to-length ratio and the second number of pixels, and identifying a siding product associated with the first and second length measurements.
Abstract:
Methods, systems, and computer readable media are disclosed for determining a pixel-to-length ratio between a number of pixels disposed over a predetermined length of a reference object within an image of a siding sample and the predetermined length of the reference object. A first and second distance between respective first and second pairs of points within the image corresponding to respective first and second length measurements of the siding sample are determined, as well as a first and second number of pixels disposed between the first and second pair of points, respectively. Furthermore, the method, system, and computer readable medium disclose determining the first length measurement based on the pixel-to-length ratio and the first number of pixels, determining the second length measurement based on the pixel-to-length ratio and the second number of pixels, and identifying a siding product associated with the first and second length measurements.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.
Abstract:
Techniques for implementing machine learning to improve claim handling are disclosed. In some scenarios, the machine-learning, analytics model may be trained in accordance with data that is relevant to insurance products, such as life and health insurance. A set of labeled historical claims each corresponding to a settlement amount may be analyzed to train an artificial neural network, A claim may be received from a user mobile device, and may be analyzed using the trained artificial neural network to predict a claim settlement, which may be used to generate a settlement offer. The settlement offer may be transmitted to the user's mobile device, and if a manifestation of acceptance is received from the user, then the claim may be automatically paid.
Abstract:
In a computer-implemented method and system for capturing the condition of a structure, the structure is scanned with an unmanned aerial vehicle (UAV). Data collected by the UAV corresponding to points on a surface of a structure is received and a 3D point cloud is generated for the structure, where the 3D point cloud is generated based at least in part on the received UAV data. A 3D model of the surface of the structure is reconstructed using the 3D point cloud.