Abstract:
An integrated device for detection of the UV-index is provided with: a photodetector, which generates a detection quantity as a function of a detected UV radiation; and a processing stage, which is coupled to the photodetector and supplies at output a detected value of the UV-index, on the basis of the detection quantity. The processing stage processes the detection quantity on the basis of an adjustment factor, to supply at output the detected value of the UV-index and is further provided with an adjustment stage, coupled to the processing stage for adjusting the value of the adjustment factor.
Abstract:
A method includes sensing a level of ultraviolet radiation in an environment in which an electronic device is present, detecting an environmental condition of the electronic device based upon the sensed level of ultraviolet radiation, and controlling the operation of the electronic device based upon the detected environmental condition. The detected environmental condition may include an indoor condition, outdoor condition, near-window condition, near-door condition, and in-vehicle condition of the electronic device. Controlling the operation of the electronic device based upon the detected environmental condition may include selectively activating and deactivating components of the device based on the detected environmental condition to reduce power consumption of the device.
Abstract:
In one embodiment, a light assembly includes a base substrate; a light-emitting device supported by the base substrate; a cover permeable to volatile compounds, completely surrounding the light-emitting device and being transparent to a light flux emitted, during use, by the light-emitting device; a gas sensor configured to sense the volatile compounds, the gas sensor being arranged within the cover. The light assembly includes a pump having an inlet operatively coupled to the cover, and operable to generate a pressure depression within the cover. The light assembly includes a light sensor operatively coupled to the light-emitting device, the light sensor being configured to sense a light intensity value of at least one light component of the light flux. The light assembly includes a processor operatively coupled to the gas sensor, the light sensor, and the pump; a non-volatile memory storing a program to be executed in the processor.
Abstract:
An in-liquid state of a mobile device is detected by processing color components indicative of an intensity of the ambient light at different wavelengths and a pressure data indicative of ambient pressure. A first plausibility index indicates a likelihood of an air/liquid transition as a function of variations of at least two color components. A second plausibility index indicates a likelihood of an air/liquid transition as a function of variations of said ambient pressure. If both the first and the second plausibility indices indicate a likely air/liquid transition event, an in-liquid state signal is generated.
Abstract:
A method includes sensing a level of ultraviolet radiation in an environment in which an electronic device is present, detecting an environmental condition of the electronic device based upon the sensed level of ultraviolet radiation, and controlling the operation of the electronic device based upon the detected environmental condition. The detected environmental condition may include an indoor condition, outdoor condition, near-window condition, near-door condition, and in-vehicle condition of the electronic device. Controlling the operation of the electronic device based upon the detected environmental condition may include selectively activating and deactivating components of the device based on the detected environmental condition to reduce power consumption of the device.
Abstract:
An in-liquid state of a mobile device is detected by processing color components indicative of an intensity of the ambient light at different wavelengths and a pressure data indicative of ambient pressure. A first plausibility index indicates a likelihood of an air/liquid transition as a function of variations of at least two color components. A second plausibility index indicates a likelihood of an air/liquid transition as a function of variations of said ambient pressure. If both the first and the second plausibility indices indicate a likely air/liquid transition event, an in-liquid state signal is generated.
Abstract:
An offset-compensation circuit in a MEMS sensor device, provided with a micromechanical detection structure that transduces a quantity to be detected into an electrical detection quantity, and with an electronic reading circuit, coupled to the micromechanical detection structure for processing the electrical detection quantity and supplying an output signal, which is a function of the quantity to be detected. A compensation structure is electrically coupled to the input of the electronic reading circuit and can be controlled for generating an electrical compensation quantity, of a trimmable value, for compensating an offset on the output signal; the compensation circuit has a control unit, which reads the output signal during operation of the MEMS sensor device; obtains information on the offset present on the output signal itself; and controls the compensation structure as a function of the offset information.
Abstract:
An offset-compensation circuit in a MEMS sensor device, provided with a micromechanical detection structure that transduces a quantity to be detected into an electrical detection quantity, and with an electronic reading circuit, coupled to the micromechanical detection structure for processing the electrical detection quantity and supplying an output signal, which is a function of the quantity to be detected. A compensation structure is electrically coupled to the input of the electronic reading circuit and can be controlled for generating an electrical compensation quantity, of a trimmable value, for compensating an offset on the output signal; the compensation circuit has a control unit, which reads the output signal during operation of the MEMS sensor device; obtains information on the offset present on the output signal itself; and controls the compensation structure as a function of the offset information.