Abstract:
A test chip performs measurements to evaluate the performances of interconnects. In particular, the statistical failure distribution, the electromigration and the leakage current are measured. An algorithm detects a via failure at any of the available n metal layers. The test chip includes a ROM memory array. The vias to be measured are formed in the columns of the array. Via or contact failures are detected by forcing a predetermined current through both an array column and a reference column. The failure analysis is obtained by comparing the resulting voltage drops.
Abstract:
An electrically erasable and programmable memory cell is provided. The memory cell includes a floating gate MOS transistor and a bipolar transistor for injecting an electric charge into the floating gate. The floating gate transistor has a source region and a drain region formed in a first well with a channel defined between the drain and source regions, a control gate region, and a floating gate extending over the channel and the control gate region. The bipolar transistor has an emitter region formed in the first well, a base region consisting of the first well, and a collector region consisting of the channel. The memory cell includes a second well that is insulated from the first well, and the control gate region is formed in the second well. Further embodiments of the present invention provide a memory including at least one such memory cell, an electronic device including such a memory, and methods of integrating a memory cell and erasing a memory cell.
Abstract:
An integrated non-volatile memory device may include a first matrix of memory cells organized into rows (or word lines) and columns (or bit lines), corresponding row and column decoding circuits, and read, modify and erase circuits for reading and modifying data stored in the memory cells. Furthermore, the memory device may also include a test structure including a second matrix of memory cells smaller than the first. The second memory matrix may include word line couplings each having a different contact to gate distance. That is, each coupling is aligned a different distance from its respective gate than adjacent couplings.