Abstract:
A method for forming an aluminum titanium nitride layer on a wafer by plasma-enhanced physical vapor deposition including a first step at a radio frequency power ranging between 100 and 500 W only, and a second step at a radio frequency power ranging between 500 and 1,000 W superimposed to a D.C. power ranging between 500 and 1,000 W. An insulated gate comprising such an aluminum titanium nitride layer.
Abstract:
A MOS transistor having a gate insulator including a dielectric of high permittivity and a conductive layer including a TiN layer, wherein the nitrogen composition in the TiN layer is sub-stoichiometric in its lower portion and progressively increases to a stoichiometric composition in its upper portion.
Abstract:
At least one MOS transistor is produced by forming a dielectric region above a substrate and forming a gate over the dielectric region. The gate is formed to include a metal gate region. Formation of the metal gate region includes: forming a layer of a first material configured to reduce an absolute value of a threshold voltage of the transistor, and configuring a part of the metal gate region so as also to form a diffusion barrier above the layer of the first material. Then, doped source and drain regions are formed using a dopant activation anneal.
Abstract:
At least one MOS transistor is produced by forming a dielectric region above a substrate and forming a gate over the dielectric region. The gate is formed to include a metal gate region. Formation of the metal gate region includes: forming a layer of a first material configured to reduce an absolute value of a threshold voltage of the transistor, and configuring a part of the metal gate region so as also to form a diffusion barrier above the layer of the first material. Then, doped source and drain regions are formed using a dopant activation anneal.