Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
Abstract:
At least one MOS transistor is produced by forming a dielectric region above a substrate and forming a gate over the dielectric region. The gate is formed to include a metal gate region. Formation of the metal gate region includes: forming a layer of a first material configured to reduce an absolute value of a threshold voltage of the transistor, and configuring a part of the metal gate region so as also to form a diffusion barrier above the layer of the first material. Then, doped source and drain regions are formed using a dopant activation anneal.
Abstract:
At least one MOS transistor is produced by forming a dielectric region above a substrate and forming a gate over the dielectric region. The gate is formed to include a metal gate region. Formation of the metal gate region includes: forming a layer of a first material configured to reduce an absolute value of a threshold voltage of the transistor, and configuring a part of the metal gate region so as also to form a diffusion barrier above the layer of the first material. Then, doped source and drain regions are formed using a dopant activation anneal.
Abstract:
A MOS transistor having a gate insulator including a dielectric of high permittivity and a conductive layer including a TiN layer, wherein the nitrogen composition in the TiN layer is sub-stoichiometric in its lower portion and progressively increases to a stoichiometric composition in its upper portion.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
Abstract:
A method for forming an aluminum titanium nitride layer on a wafer by plasma-enhanced physical vapor deposition including a first step at a radio frequency power ranging between 100 and 500 W only, and a second step at a radio frequency power ranging between 500 and 1,000 W superimposed to a D.C. power ranging between 500 and 1,000 W. An insulated gate comprising such an aluminum titanium nitride layer.