Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
A method for forming an aluminum titanium nitride layer on a wafer by plasma-enhanced physical vapor deposition including a first step at a radio frequency power ranging between 100 and 500 W only, and a second step at a radio frequency power ranging between 500 and 1,000 W superimposed to a D.C. power ranging between 500 and 1,000 W. An insulated gate comprising such an aluminum titanium nitride layer.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. The metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition with process parameters selected so as to produce grains of material exhibiting a uniaxial grain orientation. The uniaxial grain structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
A photonic integrated circuit includes an optical coupling device situated between two successive interconnection metal levels. The optical coupling device includes a first optical portion that receives an optical signal having a transverse electric component in a fundamental mode and a transverse magnetic component. A second optical portion converts the transverse magnetic component of the optical signal into a converted transverse electric component in a higher order mode. A third optical portion separates the transverse electric component from the converted transverse electric component and switches the higher order mode to the fundamental mode. A fourth optical portion transmits the transverse electric component to one waveguide and transmits the converted transverse electric component to another waveguide.
Abstract:
A photonic integrated circuit includes an optical coupling device situated between two successive interconnection metal levels. The optical coupling device includes a first optical portion that receives an optical signal having a transverse electric component in a fundamental mode and a transverse magnetic component. A second optical portion converts the transverse magnetic component of the optical signal into a converted transverse electric component in a higher order mode. A third optical portion separates the transverse electric component from the converted transverse electric component and switches the higher order mode to the fundamental mode. A fourth optical portion transmits the transverse electric component to one waveguide and transmits the converted transverse electric component to another waveguide.
Abstract:
Local variability of the grain size of work function metal, as well as its crystal orientation, induces a variable work function and local variability of transistor threshold voltage. If the metal nitride for the work function metal of the transistor gate is deposited using a radio frequency physical vapor deposition, equiaxed grains are produced. The substantially equiaxed structure for the metal nitride work function metal layer (such as with TiN) reduces local variability in threshold voltage.
Abstract:
A photonic integrated circuit includes an optical coupling device situated between two successive interconnection metal levels. The optical coupling device includes a first optical portion that receives an optical signal having a transverse electric component in a fundamental mode and a transverse magnetic component. A second optical portion converts the transverse magnetic component of the optical signal into a converted transverse electric component in a higher order mode. A third optical portion separates the transverse electric component from the converted transverse electric component and switches the higher order mode to the fundamental mode. A fourth optical portion transmits the transverse electric component to one waveguide and transmits the converted transverse electric component to another waveguide.
Abstract:
A photonic integrated circuit includes an optical coupling device situated between two successive interconnection metal levels. The optical coupling device includes a first optical portion that receives an optical signal having a transverse electric component in a fundamental mode and a transverse magnetic component. A second optical portion converts the transverse magnetic component of the optical signal into a converted transverse electric component in a higher order mode. A third optical portion separates the transverse electric component from the converted transverse electric component and switches the higher order mode to the fundamental mode. A fourth optical portion transmits the transverse electric component to one waveguide and transmits the converted transverse electric component to another waveguide.