Abstract:
A system for interfacing an LC sensor includes a starter configured to selectively start an oscillation of the LC sensor. The system also includes an analog peak detector configured to determine a signal being indicative of a peak voltage of the oscillation of the LC sensor and a detector configured to determine a state of the LC sensor as a function of the signal determined by the analog peak detector.
Abstract:
A system, such as a System-on-Chip includes an interface component or PLUG which generates transactions over an IP block, such as an interconnect serving one or more clients via virtual channels. The client or clients are mapped onto the virtual channels via client/virtual channel mappings. The virtual channels are provided as a first set of virtual channels in the interface component which cooperate with a second set of virtual channels in the IP block. First and second client/virtual channel mappings for the first set of virtual channels and the second set of virtual channels are provided. The first and second client/virtual channel mappings are separately programmable and mutually decoupled from one another.
Abstract:
A method includes providing at least one target bandwidth for bandwidth usage on an interconnect, the target bandwidth being for traffic associated with a traffic initiator. The method also includes measuring a served bandwidth and resetting the measuring of served bandwidth in response to an occurrence of an event.
Abstract:
A system for interfacing an LC sensor includes a starter configured to selectively start an oscillation of the LC sensor. The system also includes an analog peak detector configured to determine a signal being indicative of a peak voltage of the oscillation of the LC sensor and a detector configured to determine a state of the LC sensor as a function of the signal determined by the analog peak detector.